A stable collocation approach to solve a neutral delay stochastic differential equation of fractional order

被引:16
作者
Banihashemi, S. [1 ]
Jafari, H. [1 ,2 ,3 ,4 ]
Babaei, A. [1 ]
机构
[1] Univ Mazandaran, Dept Appl Math, Babolsar, Iran
[2] Univ South Africa, Dept Math Sci, UNISA0003, Pretoria, South Africa
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 110122, Taiwan
[4] Azerbaijan Univ, Dept Math & Informat, Jeyhun Hajibeyli 71, AZ-1007 Baku, Azerbaijan
关键词
Fractional calculus; Neutral stochastic delay differential equation; Step-by-step technique; Jacobi collocation scheme; Convergence analysis; OPERATIONAL MATRIX; MODEL;
D O I
10.1016/j.cam.2021.113845
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, a step-by-step collocation technique based on the Jacobi polynomials is considered to solve a class of neutral delay fractional stochastic differential equations (NDFSDEs). First, we convert the NDFSDE into a non-delay equation by applying a stepby-step method. Then, by using a Jacobi collocation technique in each step, a non-delay nonlinear system is obtained. The convergence analysis of this numerical technique is discussed. Finally, several examples are implemented to confirm the efficiency and effectiveness of the proposed method. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 33 条
[1]   A Stochastic Optimal Control Model for BCG Immunotherapy in Superficial Bladder Cancer [J].
Aboulaich, R. ;
Darouichi, A. ;
Elmouki, I. ;
Jraifi, A. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (05) :99-119
[2]  
[Anonymous], 1998, STOCHASTIC DIFFERENT
[3]   Mathematical analysis of a stochastic model for spread of Coronavirus [J].
Babaei, A. ;
Jafari, H. ;
Banihashemi, S. ;
Ahmadi, M. .
CHAOS SOLITONS & FRACTALS, 2021, 145
[4]  
Babaei A, 2022, ENG COMPUT-GERMANY, V38, P2169, DOI 10.1007/s00366-020-01185-7
[5]   Numerical solution of variable order fractional nonlinear quadratic integro-differential equations based on the sixth-kind Chebyshev collocation method [J].
Babaei, A. ;
Jafari, H. ;
Banihashemi, S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 377
[6]   A NOVEL COLLOCATION APPROACH TO SOLVE A FRACTIONAL ORDER INVOLVING A CONSTANT DELAY [J].
Banihashemi, Seddigheh ;
Jafaria, Hossein ;
Babaei, Afshin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (02) :339-357
[7]  
Bellomo N., 1992, Nonlinear Stochastic Evolution Problems in Applied Sciences
[8]   A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations [J].
Bhrawy, A. H. ;
Doha, E. H. ;
Baleanu, D. ;
Ezz-Eldien, S. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :142-156
[9]   Faedo-Galerkin approximate solutions of a neutral stochastic fractional differential equation with finite delay [J].
Chadha, Alka ;
Pandey, Dwijendra N. ;
Bahuguna, Dhirendra .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 347 :238-256
[10]  
Chaudhary R., 2017, INT J APPL COMPUT MA, V3, P1203, DOI DOI 10.1007/S40819-016-0171-X