A Colocalized Scheme for Three-Temperature Grey Diffusion Radiation Hydrodynamics

被引:11
作者
Chauvin, R. [1 ]
Guisset, S. [1 ]
Manach-Perennou, B. [1 ]
Martaud, L. [1 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
关键词
Colocalized Lagrangian scheme; radiation hydrodynamics; grey diffusion; discrete entropy production; plasma physics simulations; FINITE-VOLUME SCHEME; TRANSPORT; TIME;
D O I
10.4208/cicp.OA-2021-0059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A positivity-preserving, conservative and entropic numerical scheme is presented for the three-temperature grey diffusion radiation hydrodynamics model. More precisely, the dissipation matrices of the colocalized semi-Lagrangian scheme are defined in order to enforce the entropy production on each species (electron or ion) proportionally to its mass as prescribed in [34]. A reformulation of the model is then considered to enable the derivation of a robust convex combination based scheme. This yields the positivity-preserving property at each sub-iteration of the algorithm while the total energy conservation is reached at convergence. Numerous pure hydrodynamics and radiation hydrodynamics test cases are carried out to assess the accuracy of the method. The question of the stability of the scheme is also addressed. It is observed that the present numerical method is particularly robust.
引用
收藏
页码:293 / 330
页数:38
相关论文
共 35 条
  • [1] A positive scheme for diffusion problems on deformed meshes
    Blanc, Xavier
    Labourasse, Emmanuel
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (06): : 660 - 680
  • [2] Breil, 2017, NUMERICAL METHODS LA
  • [3] A monotone nonlinear finite volume method for approximating diffusion operators on general meshes
    Camier, Jean-Sylvain
    Hermeline, Francois
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2016, 107 (06) : 496 - 519
  • [4] Castor J. I., 2004, RAD HYDRODYNAMICS
  • [5] A Conservative Lagrangian Scheme for Solving Compressible Fluid Flows with Multiple Internal Energy Equations
    Cheng, Juan
    Shu, Chi-Wang
    Zeng, Qinghong
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2012, 12 (05) : 1307 - 1328
  • [6] Decoster A., 1998, Modeling of Collisions, V2
  • [7] Edwards J.D., 2007, JOINT INT TOP M MATH
  • [8] Numerical Resolution of a Three Temperature Plasma Model
    Enaux, C.
    Guisset, S.
    Lasuen, C.
    Ragueneau, Q.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (03)
  • [9] Methods for coupling radiation, ion, and electron energies in grey Implicit Monte Carlo
    Evans, T. M.
    Densmore, J. D.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) : 1695 - 1720
  • [10] Collaborative comparison of simulation codes for high-energy-density physics applications
    Fatenejad, M.
    Fryxell, B.
    Wohlbier, J.
    Myra, E.
    Lamb, D.
    Fryer, C.
    Graziani, C.
    [J]. HIGH ENERGY DENSITY PHYSICS, 2013, 9 (01) : 63 - 66