Subspaces of C∞ invariant under the differentiation

被引:19
作者
Aleman, Alexandru [1 ]
Baranov, Anton [2 ,3 ]
Belov, Yurii [4 ]
机构
[1] Lund Univ, Ctr Math Sci, SE-22100 Lund, Sweden
[2] St Petersburg State Univ, Dept Math & Mech, St Petersburg 199034, Russia
[3] Natl Res Univ, Higher Sch Econ, St Petersburg, Russia
[4] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199034, Russia
关键词
Spectral synthesis; Entire functions; Paley-Wiener spaces; Invariant subspaces; COMPLETENESS; KERNELS;
D O I
10.1016/j.jfa.2015.01.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a proper differentiation invariant subspace of C-infinity (a, b) such that the restriction operator d/dx vertical bar L has a discrete spectrum Lambda (counting with multiplicities). We prove that L is spanned by functions vanishing outside some closed interval I subset of (a, b) and monomial exponentials x(k)e(lambda x) corresponding to Lambda if its density is strictly less than the critical value vertical bar I vertical bar/2 pi, and moreover, we show that the result is not necessarily true when the density of Lambda equals the critical value. This answers a question posed by the first author and B. Korenblum. Finally, if the residual part of L is trivial, then L is spanned by the monomial exponentials it contains. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2421 / 2439
页数:19
相关论文
共 11 条
[1]  
Aleman A., 2008, COMPUT METH FUNCT TH, V8, P493, DOI [10.1007/BF03321701, DOI 10.1007/BF03321701]
[2]   Hereditary completeness for systems of exponentials and reproducing kernels [J].
Baranov, Anton ;
Belov, Yurii ;
Borichev, Alexander .
ADVANCES IN MATHEMATICS, 2013, 235 :525-554
[3]   A restricted shift completeness problem [J].
Baranov, Anton ;
Belov, Yurii ;
Borichev, Alexander .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (07) :1887-1893
[4]   ON CLOSURE OF CHARACTERS AND ZEROS OF ENTIRE FUNCTIONS [J].
BEURLING, A ;
MALLIAVIN, P .
ACTA MATHEMATICA UPPSALA, 1967, 118 (1-2) :79-+
[5]  
DELSARTE J, 1935, J MATH PURE APPL, V14, P403
[6]  
KAHANE JP, 1953, ANN I FOURIER, V5, P39
[7]  
Makarov N, 2005, MATH PHYS S, V27, P185
[8]  
Markus A., 1970, IZV AKAD NAUK SSSR M, V34, P662
[9]   Polya sequences, Toeplitz kernels and gap theorems [J].
Mitkovski, Mishko ;
Poltoratski, Alexei .
ADVANCES IN MATHEMATICS, 2010, 224 (03) :1057-1070
[10]   THEORIE GENERALE DES FONCTIONS MOYENNE-PERIODIQUES [J].
SCHWARTZ, L .
ANNALS OF MATHEMATICS, 1947, 48 (04) :857-929