Preparation and electrochemical characterization of ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicron composite fiber-based lithium-ion battery separators

被引:127
作者
Liang, Yinzheng [1 ,2 ]
Ji, Liwen [1 ]
Guo, Bingkun [1 ]
Lin, Zhan [1 ]
Yao, Yingfang [1 ]
Li, Ying [1 ]
Alcoutlabi, Mataz [1 ]
Qiu, Yiping [2 ]
Zhang, Xiangwu [1 ]
机构
[1] N Carolina State Univ, Fiber & Polymer Sci Program, Dept Text Engn Chem & Sci, Raleigh, NC 27695 USA
[2] Donghua Univ, Dept Text Mat Sci & Prod Design, Coll Text, Shanghai 201620, Peoples R China
关键词
Lithium-ion batteries; Separators; Electrospinning; Submicron fibers; LLTO; NANOSTRUCTURED ELECTRODE MATERIALS; POLYMER ELECTROLYTES; LI; MEMBRANE; LI0.35LA0.55TIO3; CONVERSION; STORAGE; LIQUID; PVDF;
D O I
10.1016/j.jpowsour.2010.06.088
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium lanthanum titanate oxide (LLTO)/polyacrylonitrile (PAN) submicron composite fiber-based membranes were prepared by electrospinning dispersions of LLTO ceramic particles in PAN solutions. These ionic-conducting LLTO/PAN composite fiber-based membranes can be directly used as lithium-ion battery separators due to their unique porous structure. Ionic conductivities were evaluated after soaking the electrospun LLTO/PAN composite fiber-based membranes in a liquid electrolyte, 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). It was found that, among membranes with various LLTO contents, 15 wt.% LLTO/PAN composite fiber-based membranes provided the highest ionic conductivity, 1.95 x 10(-3) S cm(-1). Compared with pure PAN fiber membranes, LLTO/PAN composite fiber-based membranes had greater liquid electrolyte uptake, higher electrochemical stability window, and lower interfacial resistance with lithium. In addition, lithium//1 M LiPF6/EC/EMC//lithium iron phosphate cells containing LLTO/PAN composite fiber-based membranes as the separator exhibited high discharge specific capacity of 162 mAh g(-1) and good cycling performance at 0.2 C rate at room temperature. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:436 / 441
页数:6
相关论文
共 29 条
[1]   Ionic conducting lanthanide oxides [J].
Adachi, GY ;
Imanaka, N ;
Tamura, S .
CHEMICAL REVIEWS, 2002, 102 (06) :2405-2429
[2]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[3]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[4]   Gelled membranes for Li and Li-ion batteries prepared by electrospinning [J].
Bansal, D. ;
Meyer, B. ;
Salomon, M. .
JOURNAL OF POWER SOURCES, 2008, 178 (02) :848-851
[5]   Peculiarities of Li0.5La0.5TiO3 formation during the synthesis by solid-state reaction or precipitation from solutions [J].
Belous, A ;
Yanchevskiy, O ;
V'yunov, O .
CHEMISTRY OF MATERIALS, 2004, 16 (03) :407-417
[6]   Local structure of the Li1/8La5/8TiO3 (LLTO) ionic conductor by theoretical simulations [J].
Catti, Michele .
AB INITIO SIMULATION OF CRYSTALLINE SOLIDS: HISTORY AND PROSPECTS - CONTRIBUTIONS IN HONOR OF CESARE PISANI, 2008, 117 :12008-12008
[7]   Electrospun polymer membrane activated with room temperature ionic liquid: Novel polymer electrolytes for lithium batteries [J].
Cheruvally, Gouri ;
Kim, Jae-Kwang ;
Choi, Jae-Won ;
Ahn, Jou-Hyeon ;
Shin, Yong-Jo ;
Manuel, James ;
Raghavan, Prasanth ;
Kim, Ki-Won ;
Ahn, Hyo-Jun ;
Choi, Doo Seong ;
Song, Choong Eui .
JOURNAL OF POWER SOURCES, 2007, 172 (02) :863-869
[8]   Battery performances and thermal stability of polyacrylonitrile nano-fiber-based nonwoven separators for Li-ion battery [J].
Cho, Tae-Hyung ;
Tanaka, Masanao ;
Onishi, Hiroshi ;
Kondo, Yuka ;
Nakamura, Tatsuo ;
Yamazaki, Hiroaki ;
Tanase, Shigeo ;
Sakai, Tetsuo .
JOURNAL OF POWER SOURCES, 2008, 181 (01) :155-160
[9]   Electrospun PVDF nanofiber web as polymer electrolyte or separator [J].
Choi, SS ;
Lee, YS ;
Joo, CW ;
Lee, SG ;
Park, JK ;
Han, KS .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :339-343
[10]   Preparation of three dimensionally ordered macroporous Li0.35La0.55TiO3 by colloidal crystal templating process [J].
Dokko, K ;
Akutagawa, N ;
Isshiki, Y ;
Hoshina, K ;
Kanamura, K .
SOLID STATE IONICS, 2005, 176 (31-34) :2345-2348