共 42 条
Rapid and sensitive detection of Salmonella with reduced graphene oxide-carbon nanotube based electrochemical aptasensor
被引:91
作者:
Appaturi, Jimmy Nelson
[1
,2
]
Pulingam, Thiruchelvi
[2
]
Thong, Kwai Lin
[2
]
Muniandy, Shalini
[2
]
Ahmad, Noraini
[3
]
Leo, Bey Fen
[2
,4
]
机构:
[1] SM Pharmaceut SDN BHD, Lot 88,Sungai Petani Ind Estate, Sungai Petani 08000, Kedah, Malaysia
[2] Univ Malaya, Nanotechnol & Catalysis Res Ctr NANOCAT, Inst Adv Studies, Kuala Lumpur 50603, Malaysia
[3] Univ Malaya, Fac Sci, Dept Chem, Kuala Lumpur 50603, Malaysia
[4] Univ Malaya, Fac Med, Kuala Lumpur 50603, Malaysia
关键词:
Aptasensor;
Aptamer;
Reduced graphene oxide;
Carbon nanotubes;
Salmonella;
LABEL-FREE DETECTION;
IMPEDIMETRIC APTASENSOR;
STAPHYLOCOCCUS-AUREUS;
DNA APTAMERS;
GOLD;
NANOMATERIALS;
BIOSENSORS;
SENSORS;
D O I:
10.1016/j.ab.2019.113489
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Rapid detection of foodborne pathogens is crucial as ingestion of contaminated food products may endanger human health. Thus, the objective of this study was to develop a biosensor using reduced graphene oxide-carbon nanotubes (rGO-CNT) nanocomposite via the hydrothermal method for accurate and rapid label-free electrochemical detection of pathogenic bacteria such as Salmonella enterica. The rGO-CNT nanocomposite was characterized using Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction and transmission electron microscopy. The nanocomposite was dropped cast on the glassy carbon electrode and further modified with amino-modified DNA aptamer. The resultant ssDNA/rGO-CNT/GCE aptasensor was then used to detect bacteria by using differential pulse voltammetry (DPV) technique. Synergistic effects of aptasensor was evident through the combination of enhanced electrical properties and facile chemical functionality of both rGO and CNT for the stable interface. Under optimal experimental conditions, the aptasensor could detect S. Typhimurium in a wide linear dynamic range from 10(1) until 10(8) cfu mL(-1) with a 10(1) cfu mL(-1) of the limit of detection. This aptasensor also showed good sensitivity, selectivity and specificity for the detection of microorganisms. Furthermore, we have successfully applied the aptasensor for S. Typhimurium detection in real food samples.
引用
收藏
页数:9
相关论文