Electromechanical and Photoluminescence Properties of Al-doped ZnO Nanorods Applied in Piezoelectric Nanogenerators

被引:14
作者
Chang, Wen-Yang [1 ]
Fang, Te-Hua [2 ]
Tsai, Ju-Hsuan [3 ]
机构
[1] Natl Formosa Univ, Dept Mech & Comp Aided Engn, Yunlin 632, Taiwan
[2] Natl Kaohsiung Univ Appl Sci, Dept Mech Engn, Kaohsiung 807, Taiwan
[3] Natl Formosa Univ, Inst Electroopt & Mat Sci, Yunlin 632, Taiwan
关键词
Al dopant; ZnO; Nanogenerator; V-zigzag; Electromechanical; Photoluminescence; THIN-FILM; ALUMINUM; TEMPERATURE; FREQUENCY;
D O I
10.1007/s10909-014-1249-7
中图分类号
O59 [应用物理学];
学科分类号
摘要
A piezoelectric nanogenerator based on Al-doped ZnO (AZO) nanorods with a V-zigzag layer is investigated at a low temperature. The growth temperature, growth time, growth concentration, photoluminescence (PL) spectrum, and AZO epitaxial growth on the ITO glass substrate using aqueous solution are reported and the associated electromechanical and PL properties are discussed. In general, the properties of piezoelectric nanogenerators and their functionality at ultralow temperatures (near liquid helium temperature) are important for applications in extreme environments. A V-zigzag layer is used to enhance the bending and compression deformation of the piezoelectric nanogenerator. The electromechanical properties of AZO nanorods are tested using an ultrasonic wave generator. Results show that the percent transmittance decreases with increasing growth time and growth temperature. The intensities of the PL spectrum and the (002) peak orientation increases with increasing growth temperature. AZO at a low growth temperature of 90 C has good piezoelectric harvesting efficiency when the piezoelectric nanogenerator has a zigzag structure. The average current, voltage, and power density of the piezoelectric harvesting are 0.76 A, 1.35 mV, and 1.026 nW/mm, respectively. These results confirm the feasibility of growing AZO at low temperature. AZO nanorods have potential for energy harvester applications.
引用
收藏
页码:174 / 187
页数:14
相关论文
共 33 条
[1]   ELECTRICAL, OPTICAL AND ANNEALING CHARACTERISTICS OF ZNO-AL FILMS PREPARED BY SPRAY PYROLYSIS [J].
AKTARUZZAMAN, AF ;
SHARMA, GL ;
MALHOTRA, LK .
THIN SOLID FILMS, 1991, 198 (1-2) :67-74
[2]   Metal-like conductivity in transparent Al:ZnO films [J].
Bamiduro, O. ;
Mustafa, H. ;
Mundle, R. ;
Konda, R. B. ;
Pradhan, A. K. .
APPLIED PHYSICS LETTERS, 2007, 90 (25)
[3]  
Chang W.Y., 2013, ADV ENERGY ENG, V1, P102
[4]   Material Characteristics of Zinc Oxide Doped Aluminum for Microharvesting [J].
Chang, Wen-Yang ;
Fang, Te-Hua ;
Syu, Cheng-Hong .
INFORMATION ENGINEERING FOR MECHANICS AND MATERIALS SCIENCE, PTS 1 AND 2, 2011, 80-81 :245-+
[5]   Flexible piezoelectric harvesting based on epitaxial growth of ZnO [J].
Chang, Wen-Yang ;
Fang, Te-Hua ;
Weng, Cheng-I ;
Yang, Shin-Shing .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (03) :705-711
[6]   Low temperature sintering of Ba0.91Ca0.09Ti0.916Sn0.084O3 lead-free piezoelectric ceramics with the additives of ZnO and MnO2 [J].
Chen, Qiang ;
Wang, Tao ;
Wu, Jiagang ;
Cheng, Xiaojing ;
Wang, Xiaopeng ;
Zhang, Binyu ;
Xiao, Dingquan ;
Zhu, Jianguo .
JOURNAL OF ELECTROCERAMICS, 2014, 32 (2-3) :175-179
[7]   Simultaneous Synthesis of Al-Doped ZnO Nanoneedles and Zinc Aluminum Hydroxides through Use of a Seed Layer [J].
Cho, Seungho ;
Jung, Seung-Ho ;
Jang, Ji-Wook ;
Oh, Eugene ;
Lee, Kun-Hong .
CRYSTAL GROWTH & DESIGN, 2008, 8 (12) :4553-4558
[8]   Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique [J].
El-Brolossy, T. A. ;
Saber, O. ;
Ibrahim, S. S. .
CHINESE PHYSICS B, 2013, 22 (07)
[9]   Hydrothermal synthesis of ZnO nanorods: a statistical determination of the significant parameters in view of reducing the diameter [J].
Elen, Ken ;
Van den Rul, Heidi ;
Hardy, An ;
Van Bael, Marlies K. ;
D'Haen, Jan ;
Peeters, Roos ;
Franco, Dirk ;
Mullens, Jules .
NANOTECHNOLOGY, 2009, 20 (05)
[10]   Physical Properties of ZnO: Al Nanorods for Piezoelectric Nanogenerator Application [J].
Fang, Te-Hua ;
Kang, Shao-Hui .
CURRENT NANOSCIENCE, 2010, 6 (05) :505-511