LSTM-based Electroencephalogram Classification on Autism Spectrum Disorder

被引:11
作者
Ali, N. A. [1 ]
Syafeeza, A. R. [2 ]
Jaafar, A. S. [2 ]
Shamsuddin, S. [3 ]
Nor, Norazlin Kamal [4 ]
机构
[1] Univ Tekn Malaysia Melaka UTeM, Fak Teknol Kejuruteraan Elekt Elekt FTKEE, Ayer Keroh 75450, Melaka, Malaysia
[2] Univ Tekn Malaysia Melaka UTeM, Fak Kejuruteraan Elekt Kejuruteraan Komputer FKEK, Durian Tunggal 76100, Melaka, Malaysia
[3] Univ Tekn Malaysia Melaka UTeM, Fak Kejuruteraan Pembuatan FKP, Durian Tunggal 76100, Melaka, Malaysia
[4] Hosp Censelor Tuanku Mukhriz HUKM, Fac Med, Dept Paediat, Kuala Lumpur 56000, Malaysia
来源
INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING | 2021年 / 13卷 / 06期
关键词
Deep learning algorithm; brain signal; electroencephalogram; autism spectrum disorder; CHILDREN; BRAIN;
D O I
10.30880/ijie.13.06.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Autism Spectrum Disorder (ASD) is categorized as a neurodevelopmental disability. Having an automated technology system to classify the ASD trait would have a huge influence on paediatricians, which can aid them in diagnosing ASD in children using a quantifiable method. A novel autism diagnosis method based on a bidirectional long-short-term-memory (LSTM) network's deep learning algorithm is proposed. This multi-layered architecture merges two LSTM blocks with the other direction of propagation to classify the output state on the brain signal data from an electroencephalogram (EEG) on individuals; normal and autism obtained from the Simon Foundation Autism Research Initiative (SFARI) database. The accuracy of 99.6% obtained for 90:10 train:test data distribution, while the accuracy of 97.3% was achieved for 70:30 distribution. The result shows that the proposed approach had better autism classification with upgraded efficiency compared to single LSTM network method and potentially giving a significant contribution in neuroscience research.
引用
收藏
页码:321 / 329
页数:9
相关论文
共 33 条
[1]   Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals [J].
Acharya, U. Rajendra ;
Oh, Shu Lih ;
Hagiwara, Yuki ;
Tan, Jen Hong ;
Adeli, Hojjat .
COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 100 :270-278
[2]  
Al-Jawahiri R., 2020, J PSYCHIATR RES, P1
[3]   Atypical neural variability in carriers of 16p11.2 copy number variants [J].
Al-Jawahiri, Reem ;
Jones, Myles ;
Milne, Elizabeth .
AUTISM RESEARCH, 2019, 12 (09) :1322-1333
[4]  
Aslam AR, 2019, IEEE INT SYMP CIRC S
[5]   EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach [J].
Bosl, William J. ;
Tager-Flusberg, Helen ;
Nelson, Charles A. .
SCIENTIFIC REPORTS, 2018, 8
[6]   Deep Learning and Big Data in Healthcare: A Double Review for Critical Beginners [J].
Bote-Curiel, Luis ;
Munoz-Romero, Sergio ;
Gerrero-Curieses, Alicia ;
Luis Rojo-Alvarez, Jose .
APPLIED SCIENCES-BASEL, 2019, 9 (11)
[7]  
Calkins H, 2017, J ARRYTHM, V33, P369, DOI 10.1016/j.joa.2017.08.001
[8]   Resting-state prefrontal EEG biomarkers in correlation with MMSE scores in elderly individuals [J].
Choi, Jungmi ;
Ku, Boncho ;
You, Young Gooun ;
Jo, Miok ;
Kwon, Minji ;
Choi, Youyoung ;
Jung, Segyeong ;
Ryu, Soyoung ;
Park, Eunjeong ;
Go, Hoyeon ;
Kim, Gahye ;
Cha, Wonseok ;
Kim, Jaeuk U. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]  
Christensen DL, 2016, MMWR SURVEILL SUMM, V65, P1
[10]   Observational Learning in Low-Functioning Children With Autism Spectrum Disorders: A Behavioral and Neuroimaging Study [J].
Foti, Francesca ;
Piras, Fabrizio ;
Vicari, Stefano ;
Mandolesi, Laura ;
Petrosini, Laura ;
Menghini, Deny .
FRONTIERS IN PSYCHOLOGY, 2019, 9