FastMEDUSA: a parallelized tool to infer gene regulatory networks

被引:13
|
作者
Bozdag, Serdar [1 ]
Li, Aiguo [1 ]
Wuchty, Stefan [1 ,2 ]
Fine, Howard A. [1 ]
机构
[1] NINDS, Neurooncol Branch, NCI, Bethesda, MD 20892 USA
[2] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20892 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/bioinformatics/btq275
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: In order to construct gene regulatory networks of higher organisms from gene expression and promoter sequence data efficiently, we developed FastMEDUSA. In this parallelized version of the regulatory network-modeling tool MEDUSA, expression and sequence data are shared among a user-defined number of processors on a single multi-core machine or cluster. Our results show that FastMEDUSA allows a more efficient utilization of computational resources. While the determination of a regulatory network of brain tumor in Homo sapiens takes 12 days with MEDUSA, FastMEDUSA obtained the same results in 6 h by utilizing 100 processors.
引用
收藏
页码:1792 / 1793
页数:2
相关论文
共 50 条
  • [1] bLARS: An Algorithm to Infer Gene Regulatory Networks
    Singh, Nitin
    Vidyasagar, Mathukumalli
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (02) : 301 - 314
  • [2] An Information Gain Approach to Infer Gene Regulatory Networks
    Jafari, Mina
    Ghavami, Behnam
    Naeini, Vahid Sattari
    2015 22ND IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING (ICBME), 2015, : 81 - 86
  • [3] Prophetic Granger Causality to infer gene regulatory networks
    Carlin, Daniel E.
    Paull, Evan O.
    Graim, Kiley
    Wong, Christopher K.
    Bivol, Adrian
    Ryabinin, Peter
    Ellrott, Kyle
    Sokolov, Artem
    Stuart, Joshua M.
    PLOS ONE, 2017, 12 (12):
  • [4] How to Infer Accurate Gene Regulatory Networks From Gene Expression
    Sonnhammer, Erik
    COMPUTATIONAL METHODS IN SYSTEMS BIOLOGY, CMSB 2022, 2022, 13447 : XVI - XVII
  • [5] A Machine Learning Approach to Simulate Gene Expression and Infer Gene Regulatory Networks
    Zito, Francesco
    Cutello, Vincenzo
    Pavone, Mario
    ENTROPY, 2023, 25 (08)
  • [6] Establishing a framework to infer gene regulatory networks for kidney development.
    Menczes, Lois F.
    Piontek, Klaus
    Colautuoni, Carlo
    Patterson, Scott
    Bader, Joel
    Germino, Gregory G.
    AMERICAN JOURNAL OF KIDNEY DISEASES, 2008, 51 (04) : A69 - A69
  • [7] KBoost: a new method to infer gene regulatory networks from gene expression data
    Luis F. Iglesias-Martinez
    Barbara De Kegel
    Walter Kolch
    Scientific Reports, 11
  • [8] KBoost: a new method to infer gene regulatory networks from gene expression data
    Iglesias-Martinez, Luis F.
    De Kegel, Barbara
    Kolch, Walter
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [9] Infer Gene Regulatory Networks from Time Series Data with Formal Methods
    Ceccarelli, Michele
    Cerulo, Luigi
    Santone, Antonella
    2013 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2013,
  • [10] PREMER: A Tool to Infer Biological Networks
    Villaverde, Alejandro F.
    Becker, Kolja
    Banga, Julio R.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2018, 15 (04) : 1193 - 1202