Rapid and Facile Microwave-Assisted Surface Chemistry for Functionalized Microarray Slides

被引:14
|
作者
Lee, Jeong Heon [1 ,2 ]
Hyun, Hoon [1 ,2 ]
Cross, Conor J. [1 ,2 ]
Henary, Maged [3 ]
Nasr, Khaled A. [1 ,2 ]
Oketokoun, Rafiou [1 ,2 ]
Choi, Hak Soo [1 ,2 ]
Frangioni, John V. [1 ,2 ,4 ]
机构
[1] Beth Israel Deaconess Med Ctr, Robot Chem Grp, Ctr Mol Imaging, Boston, MA 02215 USA
[2] Beth Israel Deaconess Med Ctr, Div Hematol Oncol, Dept Med, Boston, MA 02215 USA
[3] Georgia State Univ, Dept Chem, Atlanta, GA 30303 USA
[4] Beth Israel Deaconess Med Ctr, Dept Radiol, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
surface chemistry; microwave-assisted synthesis; drug discovery; microarrays; cell-based assays; high-throughput screening; SMALL-MOLECULE MICROARRAYS; SELF-ASSEMBLED MONOLAYERS; POLY(ETHYLENE GLYCOL); MASS-SPECTROMETRY; PROTEIN; IDENTIFICATION; ARRAYS; ASSAYS;
D O I
10.1002/adfm.201102033
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This report describes a rapid and facile method for surface functionalization and ligand patterning of glass slides based on microwave-assisted synthesis and a microarraying robot. The optimized reaction enables surface modification 42-times faster than conventional techniques and includes a carboxylated self-assembled monolayer, polyethylene glycol linkers of varying length, and stable amide bonds to small molecule, peptide, or protein ligands to be screened for binding to living cells. Customized slide racks that permit functionalization of 100 slides at a time to produce a cost-efficient, highly reproducible batch process. Ligand spots can be positioned on the glass slides precisely using a microarraying robot, and spot size adjusted for any desired application. Using this system, live cell binding to a variety of ligands is demonstrate and PEG linker length is optimized. Taken together, the technology we describe should enable high-throughput screening of disease-specific ligands that bind to living cells.
引用
收藏
页码:872 / 878
页数:7
相关论文
共 50 条
  • [1] Microwave-assisted Chemistry
    Keglevich, Gyoergy
    CURRENT ORGANIC CHEMISTRY, 2013, 17 (05) : 447 - 447
  • [2] Rapid microwave-assisted preparation of amino-functionalized polymers
    Ljungdahl, Natalie
    Martikainen, Laura
    Kann, Nina
    TETRAHEDRON LETTERS, 2008, 49 (42) : 6108 - 6110
  • [3] A new facile and rapid synthesis of polyamides and polyimides by microwave-assisted polycondensation
    Imai, Y
    STEP-GROWTH POLYMERS FOR HIGH-PERFORMANCE MATERIALS: NEW SYNTHETIC METHODS, 1996, 624 : 421 - 430
  • [4] NEW FACILE AND RAPID SYNTHESIS OF POLYAMIDES AND POLYIMIDES BY MICROWAVE-ASSISTED POLYCONDENSATION
    IMAI, Y
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1995, 209 : 285 - POLY
  • [5] Microwave-assisted heterocyclic chemistry
    Coleman, WF
    JOURNAL OF CHEMICAL EDUCATION, 2006, 83 (04) : 621A - 621A
  • [6] Microwave-assisted heterocyclic chemistry
    Suna, Edgars
    Mutule, Ilga
    MICROWAVE METHODS IN ORGANIC SYNTHESIS, 2006, 266 : 49 - 101
  • [7] A Reactor for Microwave-Assisted Chemistry
    Korpas, Przemyslaw
    Borowska, Magdalena
    Celuch, Malgorzata
    Gryglewski, Daniel
    Jankowski, Krzysztof
    Kozlowski, Sebastian
    Wojtasiak, Wojciech
    IEEE MICROWAVE MAGAZINE, 2024, 25 (11) : 74 - 82
  • [8] Microwave-assisted chemistry of carbohydrates
    Corsaro, A
    Chiacchio, U
    Pistarà, V
    Romeo, G
    CURRENT ORGANIC CHEMISTRY, 2004, 8 (06) : 511 - 538
  • [9] Microwave-Assisted Click Chemistry
    Xiong, Xingquan
    Cai, Lei
    Tang, Zhongke
    CHINESE JOURNAL OF ORGANIC CHEMISTRY, 2012, 32 (08) : 1410 - 1428
  • [10] Microwave-Assisted Chemistry: a Rapid and Sustainable Route to Synthesis of Organics and Nanomaterials
    Polshettiwar, Vivek
    Nadagouda, Mallikarjuna N.
    Varma, Rajender S.
    AUSTRALIAN JOURNAL OF CHEMISTRY, 2009, 62 (01) : 16 - 26