The bandcount increment scenario. I. Basic structures

被引:20
作者
Avrutin, Viktor [1 ]
Eckstein, Bernd [1 ]
Schanz, Michael [1 ]
机构
[1] Univ Stuttgart, Inst Parallel & Distributed Syst IPVS, Univ Str 38, D-70569 Stuttgart, Germany
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2008年 / 464卷 / 2095期
关键词
bandcount increment; bandcount adding; bandcount doubling; interior crises; merging crises; piecewise-linear discontinuous maps;
D O I
10.1098/rspa.2007.0226
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Bifurcation structures in two-dimensional parameter spaces formed only by chaotic attractors are still far away from being understood completely. In a series of three papers, we investigate the chaotic domain without periodic inclusions for a map, which is considered by many authors as some kind of one-dimensional canonical form for discontinuous maps. In the first part, we report a novel bifurcation scenario formed by crises bifurcations, which includes multi-band chaotic attractors with arbitrary high bandcounts and determines the basic structure of the chaotic domain.
引用
收藏
页码:1867 / 1883
页数:17
相关论文
共 19 条
[1]  
[Anonymous], 2003, BIFURCATIONS CHAOS P
[2]  
[Anonymous], 1993, Chaos in Dynamical Systems
[3]  
AVRUTIN V, IN PRESS NONLINEARIT
[4]   Codimension-three bifurcations: Explanation of the complex one-, two-, and three-dimensional bifurcation structures in nonsmooth maps [J].
Avrutin, Viktor ;
Schanz, Michael .
PHYSICAL REVIEW E, 2007, 75 (06)
[5]   On detection of multi-band chaotic attractors [J].
Avrutin, Viktor ;
Eckstein, Bernd ;
Schanz, Michael .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2081) :1339-1358
[6]   On multi-parametric bifurcations in a scalar piecewise-linear map [J].
Avrutin, Viktor ;
Schanz, Michael .
NONLINEARITY, 2006, 19 (03) :531-552
[7]  
Bailin H., 1989, ELEMENTARY SYMBOLIC
[8]   Robust chaos [J].
Banerjee, S ;
Yorke, JA ;
Grebogi, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (14) :3049-3052
[9]   Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems [J].
Di Bernardo, M ;
Feigin, MI ;
Hogan, SJ ;
Homer, ME .
CHAOS SOLITONS & FRACTALS, 1999, 10 (11) :1881-1908
[10]  
DiBernardo M, 2008, APPL MATH SCI, V163, P1, DOI 10.1007/978-1-84628-708-4