Existence and Uniqueness of Very Weak Solutions to the Steady-State Navier-Stokes Problem in Lipschitz Domains

被引:2
作者
Coscia, Vincenzo [1 ]
机构
[1] Univ Ferrara, Dipartimento Matemat & Informat, Via Machiavelli 35, I-44121 Ferrara, Italy
关键词
Stationary Navier Stokes equations; Bounded Lipschitz domains; Boundary-value problem; BOUNDARY DATA; EQUATIONS; SYSTEM;
D O I
10.1007/s00021-016-0307-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that in a bounded Lipschitz domain of R-3 the steady-state Navier-Stokes equations with boundary data in L-2 (partial derivative Omega)have a very weak solution mu is an element of L-3 (Omega), unique for large viscosity.
引用
收藏
页码:819 / 829
页数:11
相关论文
共 26 条
[1]   Stationary Stokes, Oseen and Navier-Stokes Equations with Singular Data [J].
Amrouche, Cherif ;
Angeles Rodriguez-Bellido, M. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (02) :597-651
[2]  
[Anonymous], 2001, The Navier-Stokes equations. An elementary functional analytic approach
[3]  
[Anonymous], 2003, RICERCHE MAT
[4]   EXISTENCE, UNIQUENESS AND REGULARITY OF STATIONARY SOLUTIONS TO INHOMOGENEOUS NAVIER-STOKES EQUATIONS IN Rn [J].
Farwig, R. ;
Sohr, H. .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (01) :61-79
[5]   A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data [J].
Farwig, Reinhard ;
Galdi, Giovanni P. ;
Sohr, Hermann .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2006, 8 (03) :423-444
[6]  
Galdi G.P., 2011, Steady-State Problems
[7]   A class of solutions to stationary Stokes and Navier-Stokes equations with boundary data in W-1/q,q [J].
Galdi, GP ;
Simader, CG ;
Sohr, H .
MATHEMATISCHE ANNALEN, 2005, 331 (01) :41-74
[8]  
Kapitanskii LV., 1983, Trudy Mat. Inst. Steklov, V159, P5
[9]   Existence and Regularity of Very Weak Solutions of the Stationary Navier-Stokes Equations (vol 193, pg 117, 2009) [J].
Kim, Hyunseok .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (03) :1079-1080
[10]  
Korobkov M, 2015, ANN SCUOLA NORM-SCI, V14, P233