Exact solutions for nonlinear evolution equations using Exp-function method

被引:127
作者
Bekir, Ahmet [1 ]
Boz, Ahmet [1 ]
机构
[1] Dumlupinar Univ, Art Sci Fac, Dept Math, Kutahya, Turkey
关键词
Exp-function method; Klein-Gordon equation; Burger-Fisher equation; Sharma-Tasso-Olver equation;
D O I
10.1016/j.physleta.2007.10.018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, the Exp-function method is used to construct solitary and soliton solutions of nonlinear evolution equations. The Klein-Gordon, Burger-Fisher and Sharma-Tasso-Olver equations are chosen to illustrate the effectiveness of the method. The method is straightforward and concise, and its applications are promising. The Exp-function method presents a wider applicability for handling nonlinear wave equations. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:1619 / 1625
页数:7
相关论文
共 35 条
[1]   The extended F-expansion method and its application for a class of nonlinear evolution equations [J].
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (01) :95-104
[2]  
Ablowitz MJ., 1981, SOLITONS INVERSE SCA, V4
[3]  
BEKIR A, IN PRESS INT J NONLI
[4]   Jacobian elliptic function method for nonlinear differential-difference equations [J].
Dai, CQ ;
Zhang, JF .
CHAOS SOLITONS & FRACTALS, 2006, 27 (04) :1042-1047
[5]   Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method [J].
Ebaid, A. .
PHYSICS LETTERS A, 2007, 365 (03) :213-219
[6]   New exact travelling wave solutions using modified extended tanh-function method [J].
El-Wakil, S. A. ;
Abdou, M. A. .
CHAOS SOLITONS & FRACTALS, 2007, 31 (04) :840-852
[7]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[8]   Applications of the Jacobi elliptic function method to special-type nonlinear equations [J].
Fan, EG ;
Zhang, H .
PHYSICS LETTERS A, 2002, 305 (06) :383-392
[9]   A note on the homogeneous balance method [J].
Fan, EG ;
Zhang, HQ .
PHYSICS LETTERS A, 1998, 246 (05) :403-406
[10]  
Ganji DD, 2006, INT J NONLIN SCI NUM, V7, P411