Halogen-Doped Carbon Dots on Amorphous Cobalt Phosphide as Robust Electrocatalysts for Overall Water Splitting

被引:262
作者
Song, Haoqiang [1 ,2 ]
Yu, Jingkun [1 ,2 ]
Tang, Zhiyong [1 ,2 ]
Yang, Bai [3 ]
Lu, Siyu [1 ,2 ,4 ]
机构
[1] Zhengzhou Univ, Green Catalysis Ctr, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Coll Chem, Zhengzhou 450001, Peoples R China
[3] Jilin Univ, Coll Chem, State Key Lab Supramol Struct & Mat, Changchun 130012, Peoples R China
[4] Qingdao Univ, State Key Lab Biofibers & Ecotext, Qingdao 132101, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon dots; cobalt phosphide; electrocatalysts; halogen-doped; overall water splitting; ENERGY; MECHANISM;
D O I
10.1002/aenm.202102573
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Designing a stable and efficient dual-functional catalyst for the hydrogen evolution and oxygen evolution reactions (HER/OER) is of great significance to the development of hydrogen production by water splitting. This work reports on novel halogen (X = F, Cl, and Br)-doped carbon dots modifying amorphous cobalt phosphide (X-CDs/CoP), which can be tuned by the choice of X-CDs to have urchin, Pinus bungeana, and Albizia julibrissin type structures. The different characteristics of the various X-CDs led to different formation mechanisms and final structures. As a bifunctional catalyst, urchin-shaped F-CDs/CoP crystals achieve superior electrocatalytic performance, exhibiting excellent HER/OER activity and sustained stability in an alkaline solution. For overall water splitting, they provide current density of 10 mA cm(-2) and require a low cell voltage of 1.48 V in 1 (M) KOH. In addition, the catalytic performance shows negligible degradation after 100 h, thus demonstrating excellent long-term cycling stability. Density functional theory calculations show that the improved electrocatalytic performance of F-CDs/CoP catalysts is due to the coupling interface between CoP and F-CDs, which optimizes the hydrogen/oxygen adsorption energy and accelerates the water splitting kinetics. This work provides guidance for the rational design of transition metal phosphide electrocatalysts with outstanding performance.
引用
收藏
页数:11
相关论文
共 49 条
[1]   Tuning of Trifunctional NiCu Bimetallic Nanoparticles Confined in a Porous Carbon Network with Surface Composition and Local Structural Distortions for the Electrocatalytic Oxygen Reduction, Oxygen and Hydrogen Evolution Reactions [J].
Ahsan, Md Ariful ;
Santiago, Alain R. Puente ;
Hong, Yu ;
Zhang, Ning ;
Cano, Manuel ;
Rodriguez-Castellon, Enrique ;
Echegoyen, Luis ;
Sreenivasan, Sreeprasad T. ;
Noveron, Juan C. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (34) :14688-14701
[2]   Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting [J].
Chen, Ding ;
Lu, Ruihu ;
Pu, Zonghua ;
Zhu, Jiawei ;
Li, Hai-Wen ;
Liu, Fang ;
Hu, Song ;
Luo, Xu ;
Wu, Jinsong ;
Zhao, Yan ;
Mu, Shichun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 279 (279)
[3]   Ultralow Ru Loading Transition Metal Phosphides as High-Efficient Bifunctional Electrocatalyst for a Solar-to-Hydrogen Generation System [J].
Chen, Ding ;
Pu, Zonghua ;
Lu, Ruihu ;
Ji, Pengxia ;
Wang, Pengyan ;
Zhu, Jiawei ;
Lin, Can ;
Li, Hai-Wen ;
Zhou, Xiangang ;
Hu, Zhiyi ;
Xia, Fanjie ;
Wu, Jingsong ;
Mu, Shichun .
ADVANCED ENERGY MATERIALS, 2020, 10 (28)
[4]   Co-Fe-Cr (oxy)Hydroxides as Efficient Oxygen Evolution Reaction Catalysts [J].
Chen, Junsheng ;
Li, Hao ;
Chen, Shuangming ;
Fei, Jingyuan ;
Liu, Chang ;
Yu, Zixun ;
Shin, Kihyun ;
Liu, Zongwen ;
Song, Li ;
Henkelman, Graeme ;
Wei, Li ;
Chen, Yuan .
ADVANCED ENERGY MATERIALS, 2021, 11 (11)
[5]   Dynamic Migration of Surface Fluorine Anions on Cobalt-Based Materials to Achieve Enhanced Oxygen Evolution Catalysis [J].
Chen, Pengzuo ;
Zhou, Tianpei ;
Wang, Sibo ;
Zhang, Nan ;
Tong, Yun ;
Ju, Huanxin ;
Chu, Wangsheng ;
Wu, Changzheng ;
Xie, Yi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (47) :15471-15475
[6]   Opportunities and challenges for a sustainable energy future [J].
Chu, Steven ;
Majumdar, Arun .
NATURE, 2012, 488 (7411) :294-303
[7]   Morphology Control of Carbon-Free Spinel NiCo2O4 Catalysts for Enhanced Bifunctional Oxygen Reduction and Evolution in Alkaline Media [J].
Devaguptapu, Surya V. ;
Hwang, Sooyeon ;
Karakalos, Stavros ;
Zhao, Shuai ;
Gupta, Shiva ;
Su, Dong ;
Xu, Hui ;
Wu, Gang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (51) :44567-44578
[8]   Electrochemical neutralization energy: from concept to devices [J].
Ding, Yichun ;
Cai, Pingwei ;
Wen, Zhenhai .
CHEMICAL SOCIETY REVIEWS, 2021, 50 (03) :1495-1511
[9]   Perovskite nanostructures assembled in molten salt based on halogen anions KX (X = F, Cl and Br): Regulated morphology and defect-mediated photocatalytic activity [J].
Hailili, Reshalaiti ;
Wang, Chuanyi ;
Lichtfouse, Eric .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 232 :531-543
[10]   Fluorine-Anion-Modulated Electron Structure of Nickel Sulfide Nanosheet Arrays for Alkaline Hydrogen Evolution [J].
He, Wenjun ;
Han, Lili ;
Hao, Qiuyan ;
Zheng, Xuerong ;
Li, Ying ;
Zhang, Jun ;
Liu, Caichi ;
Liu, Hui ;
Xin, Huolin L. .
ACS ENERGY LETTERS, 2019, 4 (12) :2905-2912