New Periodic Solutions for a Class of Zakharov Equations

被引:2
作者
Sun, Cong [1 ,2 ]
Ji, Shuguan [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Jilin Jianzhu Univ, City Coll, Changchun 130111, Peoples R China
关键词
SOLITARY WAVE SOLUTIONS; STABILITY;
D O I
10.1155/2016/6219251
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Through applying the Jacobian elliptic function method, we obtain the periodic solution for a series of nonlinear Zakharov equations, which contain Klein-Gordon Zakharov equations, Zakharov equations, and Zakharov-Rubenchik equations.
引用
收藏
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 2004, MAT CONT
[2]  
Byrd P., 1971, Grundlehren der mathematischen Wissenschaften
[3]   Extended tanh-function method and its applications to nonlinear equations [J].
Fan, EG .
PHYSICS LETTERS A, 2000, 277 (4-5) :212-218
[4]   A simple fast method in finding particular solutions of some nonlinear PDE [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2001, 22 (03) :326-331
[6]   Travelling solitary wave solutions to a compound KdV-Burgers equation [J].
Parkes, EJ ;
Duffy, BR .
PHYSICS LETTERS A, 1997, 229 (04) :217-220
[7]  
Pava J., 2009, MATH SURVEYS MONOGRA
[8]   Nonlinear stability of periodic traveling wave solutions to the Schrodinger and the modified Korteweg-de Vries equations [J].
Pava, Jaime Angulo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (01) :1-30
[9]   SOLITARY WAVE SOLUTIONS FOR VARIANT BOUSSINESQ EQUATIONS [J].
WANG, ML .
PHYSICS LETTERS A, 1995, 199 (3-4) :169-172
[10]   A simple transformation for nonlinear waves [J].
Yan, CT .
PHYSICS LETTERS A, 1996, 224 (1-2) :77-84