Existence of constrained minimizer for a quadratically coupled Schrodinger systems

被引:6
作者
Liang, Zhanping [1 ]
Liu, Jintao [1 ]
机构
[1] Shanxi Univ, Sch Math Sci, Taiyuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadratically coupled Schrodinger systems; solutions; rearrangement techniques; NORMALIZED SOLUTIONS; COMPACTNESS; SOLITONS; WAVES;
D O I
10.1080/00036811.2018.1484908
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the existence of solutions to a quadratically coupled Schrodinger systems -Delta u = mu(1)u + 2 alpha u v in R-N, -Delta v = mu(2)v + alpha u(2) in R-N under the condition integral(RN) u(2) = a, integral(RN) v(2) = b. Here N = 1, 2, alpha > 0 and a, b> 0 are fixed. In the systems, mu(1) and mu(2) are unknown. We prove that there exists a solution (mu(1), mu(2), (u) over tilde, (v) over tilde) to the systems with mu(1) < 0, mu(2) < 0, and (u) over tilde, (v) over tilde. C-2(R-N) being positive, radially symmetric, and decreasing with r = vertical bar x vertical bar. Our argument is heavily based on the rearrangement techniques.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 15 条
[1]   Normalized solutions for nonlinear Schrodinger systems [J].
Bartsch, Thomas ;
Jeanjean, Louis .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (02) :225-242
[2]   Normalized solutions for a system of coupled cubic Schrodinger equations on R3 [J].
Bartsch, Thomas ;
Jeanjean, Louis ;
Soave, Nicola .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (04) :583-614
[3]   SOLITONS DUE TO 2ND-HARMONIC GENERATION [J].
BURYAK, AV ;
KIVSHAR, YS .
PHYSICS LETTERS A, 1995, 197 (5-6) :407-412
[4]   Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications [J].
Buryak, AV ;
Di Trapani, P ;
Skryabin, DV ;
Trillo, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 370 (02) :63-235
[5]  
Chen ZJ, 2015, T AM MATH SOC, V367, P3599
[6]   Multiple positive normalized solutions for nonlinear Schrodinger systems [J].
Gou, Tianxiang ;
Jeanjean, Louis .
NONLINEARITY, 2018, 31 (05) :2319-2345
[7]   Existence and orbital stability of standing waves for nonlinear Schrodinger systems [J].
Gou, Tianxiang ;
Jeanjean, Louis .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 144 :10-22
[8]  
Ikoma N, 2014, ADV NONLINEAR STUD, V14, P115
[9]   POSITIVE GROUND STATE SOLUTIONS OF A QUADRATICALLY COUPLED SCHRODINGER SYSTEM [J].
Liang, Zhanping ;
Song, Yuanmin ;
Li, Fuyi .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (03) :999-1012
[10]  
Lieb H., 2001, Graduate Studies in Mathematics, V14