Galileo invariant system and the motion of relativistic d-branes -: art. no. 085007

被引:65
作者
Bazeia, D [1 ]
机构
[1] MIT, Ctr Theoret Phys, Nucl Sci Lab, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] Univ Fed Paraiba, Dept Fis, BR-58051970 Joao Pessoa, Paraiba, Brazil
来源
PHYSICAL REVIEW D | 1999年 / 59卷 / 08期
关键词
D O I
10.1103/PhysRevD.59.085007
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We follow recent work and study the relativistic d-brane system in (d+1,1) dimensions and its connection with a Galileo invariant system in (d,1) dimensions. In particular, we solve d-brane systems in (2,1), (3,1), and (4,1) dimensions and show that their solutions solve the corresponding Galileo invariant systems in (1,1), (2,1), and (3,1) dimensions. The results are extended to higher dimensions. [S0556-2821(99)03208-7].
引用
收藏
页码:1 / 13
页数:13
相关论文
共 26 条
[1]   MULTI-HAMILTONIAN STRUCTURE OF THE BORN-INFELD EQUATION [J].
ARIK, M ;
NEYZI, F ;
NUTKU, Y ;
OLVER, PJ ;
VEROSKY, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (06) :1338-1344
[2]   Nonlinear realization of a dynamical poincare symmetry by a field-dependent diffeomorphism [J].
Bazeia, D ;
Jackiw, R .
ANNALS OF PHYSICS, 1998, 270 (01) :246-259
[3]   THE DYNAMICS OF RELATIVISTIC MEMBRANES - REDUCTION TO 2-DIMENSIONAL FLUID-DYNAMICS [J].
BORDEMANN, M ;
HOPPE, J .
PHYSICS LETTERS B, 1993, 317 (03) :315-320
[4]   Foundations of the new field theory. [J].
Born, M ;
Infeld, L .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-CONTAINING PAPERS OF A MATHEMATICAL AND PHYSICAL CHARACTER, 1934, 144 (A852) :0425-0451
[5]   Brane dynamics from the Born-Infeld action [J].
Callan, CG ;
Maldacena, JM .
NUCLEAR PHYSICS B, 1998, 513 (1-2) :198-212
[6]   QUANTUM COLLISION-THEORY WITH PHASE-SPACE DISTRIBUTIONS [J].
CARRUTHERS, P ;
ZACHARIASEN, F .
REVIEWS OF MODERN PHYSICS, 1983, 55 (01) :245-285
[7]   Holomorphic curves from matrices [J].
Cornalba, L ;
Taylor, W .
NUCLEAR PHYSICS B, 1998, 536 (03) :513-552
[8]   PROPERTIES OF NONLINEAR SCHRODINGER-EQUATIONS ASSOCIATED WITH DIFFEOMORPHISM GROUP-REPRESENTATIONS [J].
DOEBNER, HD ;
GOLDIN, GA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (05) :1771-1780
[9]  
DUVAL C, UNPUB
[10]   HAMILTONIAN REDUCTION OF UNCONSTRAINED AND CONSTRAINED SYSTEMS [J].
FADDEEV, L ;
JACKIW, R .
PHYSICAL REVIEW LETTERS, 1988, 60 (17) :1692-1694