Electroluminescence from nanocrystals above 2 μm

被引:46
作者
Qu, Junling [1 ]
Weis, Mateusz [2 ]
Izquierdo, Eva [1 ]
Mizrahi, Simon Gwenael [2 ]
Chu, Audrey [1 ]
Dabard, Corentin [1 ,3 ]
Greboval, Charlie [1 ]
Bossavit, Erwan [1 ]
Prado, Yoann [1 ]
Peronne, Emmanuel [2 ]
Ithurria, Sandrine [3 ]
Patriarche, Gilles [4 ]
Silly, Mathieu G. [5 ]
Vincent, Gregory [6 ]
Boschetto, Davide [2 ]
Lhuillier, Emmanuel [1 ]
机构
[1] Sorbonne Univ, Inst NanoSci Paris, Paris, France
[2] CNRS, Inst Polytech Paris, Lab Opt Appl, Ecole Polytech, Palaiseau, France
[3] Sorbonne Univ, ESPCI Paris, PSL Res Univ, Lab Phys & Etud Mat, Paris, France
[4] Univ Paris Saclay, Ctr Nanosci & Nanotechnol, Palaiseau, France
[5] Synchrotron SOLEIL, St Aubin, France
[6] ONERA French Aerosp Lab, Palaiseau, France
基金
欧洲研究理事会;
关键词
HGTE NANOCRYSTALS; QUANTUM DOTS; THRESHOLD; EMISSION;
D O I
10.1038/s41566-021-00902-y
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Visible nanocrystal-based light-emitting diodes (LEDs) are about to become commercially available. However, their infrared counterparts suffer from two key limitations. First, III-V semiconductor technologies are strong competitors. Second, their potential for operation beyond 1.7 mu m remains unexplored. The range from 1.5 to 4 mu m corresponds to a technological gap in which the efficiency of interband quantum-well-based devices vanishes and quantum cascade lasers are not efficient enough. Powerful infrared LEDs in this range are needed for applications such as active imaging, organic molecule sensing and airfield lighting. Here we report the design of a HgTe nanocrystal-based LED with luminescence between 2 and 2.3 mu m. With an external quantum efficiency of 0.3% and radiance up to 3 W Sr-1 m(-2), these HgTe LEDs already present a competitive performance for emission above 2 mu m.
引用
收藏
页码:38 / +
页数:9
相关论文
共 47 条
[1]   Electrically pumped all photonic crystal 2nd order DFB lasers arrays emitting at 2.3 μm [J].
Adelin, B. ;
Gauthier-Lafaye, O. ;
Dubreuil, P. ;
Lecestre, A. ;
Rouillard, Y. ;
Bahriz, M. ;
Boissier, G. ;
Vicet, A. ;
Monmayrant, A. .
APL PHOTONICS, 2017, 2 (03)
[2]   Multiple exciton generation and ultrafast exciton dynamics in HgTe colloidal quantum dots [J].
Al-Otaify, Ali ;
Kershaw, Stephen V. ;
Gupta, Shuchi ;
Rogach, Andrey L. ;
Allan, Guy ;
Delerue, Christophe ;
Binks, David. J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (39) :16864-16873
[3]   Tight-binding calculations of the optical properties of HgTe nanocrystals [J].
Allan, Guy ;
Delerue, Christophe .
PHYSICAL REVIEW B, 2012, 86 (16)
[4]   Revealing the Band Structure of FAPI Quantum Dot Film and Its Interfaces with Electron and Hole Transport Layer Using Time Resolved Photoemission [J].
Amelot, Dylan ;
Rastogi, Prachi ;
Martinez, Bertille ;
Greboval, Charlie ;
Livache, Clement ;
Bresciani, Francesco Andrea ;
Qu, Junling ;
Chu, Audrey ;
Goyal, Mayank ;
Chee, Sang -Soo ;
Casaretto, Nicolas ;
Xu, Xiang Zhen ;
Methivier, Christophe ;
Cruguel, Herve ;
Ouerghi, Abdelkarim ;
Nag, Angshuman ;
Silly, Mathieu G. ;
Witkowski, Nadine ;
Lhuillier, Emmanuel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (06) :3873-3880
[5]   Time-resolved photoelectron spectroscopy using synchrotron radiation time structure [J].
Bergeard, N. ;
Silly, M. G. ;
Krizmancic, D. ;
Chauvet, C. ;
Guzzo, M. ;
Ricaud, J. P. ;
Izquierdo, M. ;
Stebel, L. ;
Pittana, P. ;
Sergo, R. ;
Cautero, G. ;
Dufour, G. ;
Rochet, F. ;
Sirotti, F. .
JOURNAL OF SYNCHROTRON RADIATION, 2011, 18 :245-250
[6]   Small atomic displacements recorded in bismuth by the optical reflectivity of femtosecond laser-pulse excitations [J].
Boschetto, D. ;
Gamaly, E. G. ;
Rode, A. V. ;
Luther-Davies, B. ;
Glijer, D. ;
Garl, T. ;
Albert, O. ;
Rousse, A. ;
Etchepare, J. .
PHYSICAL REVIEW LETTERS, 2008, 100 (02)
[7]  
Chuang CHM, 2014, NAT MATER, V13, P796, DOI [10.1038/nmat3984, 10.1038/NMAT3984]
[8]  
Delin A, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.035117
[9]   QUANTUM CASCADE LASER [J].
FAIST, J ;
CAPASSO, F ;
SIVCO, DL ;
SIRTORI, C ;
HUTCHINSON, AL ;
CHO, AY .
SCIENCE, 1994, 264 (5158) :553-556
[10]  
Geiregat P, 2018, NAT MATER, V17, P35, DOI [10.1038/NMAT5000, 10.1038/nmat5000]