Scalable Chemical Interface Confinement Reduction BiOBr to Bismuth Porous Nanosheets for Electroreduction of Carbon Dioxide to Liquid Fuel

被引:76
作者
Fu, Xianbiao [1 ,2 ]
Wang, Jia-ao [3 ,4 ]
Hu, Xiaobing [5 ]
He, Kun [5 ]
Tu, Qing [5 ]
Yue, Qin [1 ]
Kang, Yijin [1 ,2 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Sichuan, Peoples R China
[2] Northwestern Univ, Inst Sustainabil & Energy, Evanston, IL 60208 USA
[3] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[4] Univ Texas Austin, Oden Inst Computat Engn & Sci, Austin, TX 78712 USA
[5] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
基金
中国国家自然科学基金;
关键词
2D materials; BiOBr nanosheets; chemical interface confinement reduction; CO; (2) electroreduction; grain boundary; ELECTROCHEMICAL REDUCTION; CO2; ELECTROREDUCTION; CRYSTALLINE; MONOXIDE; POLYMERIZATION; CATALYST; FORMATE; COPPER; BI;
D O I
10.1002/adfm.202107182
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical reduction of carbon dioxide (CO2) toward chemical and fuel production is a compelling component of the new energy system. Two-dimensional bismuth with a particular surface has been identified as a highly efficient electrocatalyst for converting CO2 to formate. However, the development of a controllable synthetic strategy for possible large-scale production of such Bi materials remains highly challenging. Herein, a scalable chemical interface confinement reduction method is proposed for topotactic transformation of BiOBr (001) nanosheets to metallic Bi (001) porous nanosheets (PNS). As expected, the Bi (001) PNS exhibits excellent electrochemical performance on CO2 reduction to formate, with Faradaic efficiency of 95.2% and formate partial current density of 72 mA cm(-2). Density functional theory calculations suggest that Bi PNS selectively exposes (001) surfaces with small-angle grain boundaries can significantly lower the free energy barrier for the formation of *OCHO, which are responsible for the high activity and selectivity toward CO2-to-formate conversion.
引用
收藏
页数:8
相关论文
共 47 条
[1]   Grain-Boundary-Rich Copper for Efficient Solar-Driven Electrochemical CO2 Reduction to Ethylene and Ethanol [J].
Chen, Zhiqiang ;
Wang, Tuo ;
Liu, Bin ;
Cheng, Dongfang ;
Hu, Congling ;
Zhang, Gong ;
Zhu, Wenjin ;
Wang, Huaiyuan ;
Zhao, Zhi-Jian ;
Gong, Jinlong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (15) :6878-6883
[2]   2D Metal Oxyhalide-Derived Catalysts for Efficient CO2 Electroreduction [J].
de Arquer, F. Pelayo Garcia ;
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao-Thang Dinh ;
Seifitokaldani, Ali ;
Saidaminov, Makhsud I. ;
Tan, Chih-Shan ;
Quan, Li Na ;
Proppe, Andrew ;
Kibria, Md. Golam ;
Kelley, Shana O. ;
Sinton, David ;
Sargent, Edward H. .
ADVANCED MATERIALS, 2018, 30 (38)
[3]   Bismuth Oxides with Enhanced Bismuth-Oxygen Structure for Efficient Electrochemical Reduction of Carbon Dioxide to Formate [J].
Deng, Peilin ;
Wang, Hongming ;
Qi, Ruijuan ;
Zhu, Jiexin ;
Chen, Shenghua ;
Yang, Fan ;
Zhou, Liang ;
Qi, Kai ;
Liu, Hongfang ;
Xia, Bao Yu .
ACS CATALYSIS, 2020, 10 (01) :743-750
[4]   Grain-Boundary-Dependent CO2 Electroreduction Activity [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (14) :4606-4609
[5]   Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products [J].
Gao, Dunfeng ;
Aran-Ais, Rosa M. ;
Jeon, Hyo Sang ;
Roldan Cuenya, Beatriz .
NATURE CATALYSIS, 2019, 2 (03) :198-210
[6]   A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper [J].
Gattrell, M. ;
Gupta, N. ;
Co, A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 594 (01) :1-19
[7]   Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction [J].
Gong, Qiufang ;
Ding, Pan ;
Xu, Mingquan ;
Zhu, Xiaorong ;
Wang, Maoyu ;
Deng, Jun ;
Ma, Qing ;
Han, Na ;
Zhu, Yong ;
Lu, Jun ;
Feng, Zhenxing ;
Li, Yafei ;
Zhou, Wu ;
Li, Yanguang .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Nucleation and growth of anodic oxide films on bismuth [J].
Grubac, Z ;
Metikos-Hukovic, M .
ELECTROCHIMICA ACTA, 1998, 43 (21-22) :3175-3181
[9]   Nanostructured Copper-Based Electrocatalysts for CO2 Reduction [J].
Gu, Zhengxiang ;
Shen, Hao ;
Shang, Longmei ;
Lv, Ximeng ;
Qian, Linping ;
Zheng, Gengfeng .
SMALL METHODS, 2018, 2 (11)
[10]   Ultrathin bismuth nanosheets from in situ topotactic transformation for selective electrocatalytic CO2 reduction to formate [J].
Han, Na ;
Wang, Yu ;
Yang, Hui ;
Deng, Jun ;
Wu, Jinghua ;
Li, Yafei ;
Li, Yanguang .
NATURE COMMUNICATIONS, 2018, 9