Microwave Quantum Illumination

被引:404
作者
Barzanjeh, Shabir [1 ]
Guha, Saikat [2 ]
Weedbrook, Christian [3 ]
Vitali, David [4 ]
Shapiro, Jeffrey H. [5 ]
Pirandola, Stefano [6 ,7 ]
机构
[1] Rhein Westfal TH Aachen, Inst Quantum Informat, D-52056 Aachen, Germany
[2] Raytheon BBN Technol, Quantum Informat Proc Grp, Cambridge, MA 02138 USA
[3] QKD Corp, Toronto, ON M5S 3G4, Canada
[4] Univ Camerino, Sch Sci & Technol, I-62032 Camerino, Macerata, Italy
[5] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[6] Univ York, Dept Comp Sci, York YO10 5GH, N Yorkshire, England
[7] Univ York, York Ctr Quantum Technol, York YO10 5GH, N Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
FIELDS;
D O I
10.1103/PhysRevLett.114.080503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here, we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally occurring bright thermal background in the microwave regime. We use an electro-optomechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection quantum measurement. The error probability of this microwave quantum-illumination system, or quantum radar, is shown to be superior to that of any classical microwave radar of equal transmitted energy.
引用
收藏
页数:5
相关论文
共 46 条
[1]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/NPHYS2911, 10.1038/nphys2911]
[2]  
[Anonymous], 2001, Ph.D. thesis,
[3]  
[Anonymous], ARXIV13123332
[4]   Discriminating states:: The quantum Chernoff bound [J].
Audenaert, K. M. R. ;
Calsamiglia, J. ;
Munoz-Tapia, R. ;
Bagan, E. ;
Masanes, Ll. ;
Acin, A. ;
Verstraete, F. .
PHYSICAL REVIEW LETTERS, 2007, 98 (16)
[5]   Asymptotic error rates in quantum hypothesis testing [J].
Audenaert, K. M. R. ;
Nussbaum, M. ;
Szkola, A. ;
Verstraete, F. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (01) :251-283
[6]   Optical detection of radio waves through a nanomechanical transducer [J].
Bagci, T. ;
Simonsen, A. ;
Schmid, S. ;
Villanueva, L. G. ;
Zeuthen, E. ;
Appel, J. ;
Taylor, J. M. ;
Sorensen, A. ;
Usami, K. ;
Schliesser, A. ;
Polzik, E. S. .
NATURE, 2014, 507 (7490) :81-85
[7]   Reversible Optical-to-Microwave Quantum Interface [J].
Barzanjeh, Sh ;
Abdi, M. ;
Milburn, G. J. ;
Tombesi, P. ;
Vitali, D. .
PHYSICAL REVIEW LETTERS, 2012, 109 (13)
[8]   Entangling optical and microwave cavity modes by means of a nanomechanical resonator [J].
Barzanjeh, Sh. ;
Vitali, D. ;
Tombesi, P. ;
Milburn, G. J. .
PHYSICAL REVIEW A, 2011, 84 (04)
[9]   Phase-preserving amplification near the quantum limit with a Josephson ring modulator [J].
Bergeal, N. ;
Schackert, F. ;
Metcalfe, M. ;
Vijay, R. ;
Manucharyan, V. E. ;
Frunzio, L. ;
Prober, D. E. ;
Schoelkopf, R. J. ;
Girvin, S. M. ;
Devoret, M. H. .
NATURE, 2010, 465 (7294) :64-U70
[10]  
Bochmann J, 2013, NAT PHYS, V9, P712, DOI [10.1038/NPHYS2748, 10.1038/nphys2748]