Relatively independent joinings and subsystems of W*-dynamical systems

被引:15
作者
Duvenhage, Rocco [1 ]
机构
[1] Univ Pretoria, Dept Phys, ZA-0002 Pretoria, South Africa
基金
新加坡国家研究基金会;
关键词
W*-dynamical systems; relatively independent joinings; subsystems; TOPOLOGICAL DYNAMICS; MULTIPLE RECURRENCE; AUTOMORPHISMS; ALGEBRAS; EIGENVALUES; THEOREMS;
D O I
10.4064/sm209-1-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Relatively independent joinings of W*-dynamical systems are constructed. This is intimately related to subsystems of W*-dynamical systems, and therefore we also study general properties of subsystems, in particular fixed point subsystems and compact subsystems. This allows us to obtain characterizations of weak mixing and relative ergodicity, as well as of certain compact subsystems, in terms of joinings.
引用
收藏
页码:21 / 41
页数:21
相关论文
共 38 条
[31]   AN EXAMPLE OF A MEASURE PRESERVING MAP WITH MINIMAL SELF-JOININGS, AND APPLICATIONS [J].
RUDOLPH, DJ .
JOURNAL D ANALYSE MATHEMATIQUE, 1979, 35 :97-122
[32]   NEW DEFINITION OF DYNAMIC ENTROPY FOR NONCOMMUTATIVE SYSTEMS [J].
SAUVAGEOT, JL ;
THOUVENOT, JP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 145 (02) :411-423
[33]  
Stormer E., 1974, Journal of Functional Analysis, V15, P202, DOI 10.1016/0022-1236(74)90019-6
[34]   AUTOMORPHISMS AND INVARIANT STATES OF OPERATOR ALGEBRAS [J].
STORMER, E .
ACTA MATHEMATICA UPPSALA, 1971, 127 (1-2) :1-&
[35]  
Stormer E., 1967, COMMUN MATH PHYS, V6, P192
[36]  
Stratila S., 1981, MODULAR THEORY OPERA
[37]  
Takesaki M., 2003, ALG NONCOMMUT GEOM
[38]  
Takesaki M., 2003, Encyclopaedia of Mathematical Sciences, vol. 125. Operator Algebras and Non-commutative Geometry, V125, DOI DOI 10.1007/978-3-662-10453-8