Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics

被引:34
作者
Ferluccio, Daniella A. [1 ,2 ]
Smith, Ronald I. [3 ]
Buckman, Jim [4 ]
Bos, Jan-Willem G. [1 ,2 ]
机构
[1] Heriot Watt Univ, Sch Engn & Phys Sci, Inst Chem Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Heriot Watt Univ, Sch Engn & Phys Sci, Ctr Adv Energy Storage & Recovery, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Rutherford Appleton Lab, ISIS Facil, Didcot OX11 0QX, Oxon, England
[4] Heriot Watt Univ, Inst Petr Engn, Edinburgh EH14 4AS, Midlothian, Scotland
基金
英国工程与自然科学研究理事会;
关键词
LATTICE THERMAL-CONDUCTIVITY; LARGE ENHANCEMENTS; ALLOYS; FIGURE; MERIT; THERMOPOWER; PERFORMANCE;
D O I
10.1039/c7cp07521a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The half-Heuslers NbCoSn and NbCoSb have promising thermoelectric properties. Here, an investigation of the NbCo1+ySn1-zSbz (y = 0, 0.05; 0 <= z <= 1) solid-solution is presented. In addition, the p-type doping of NbCoSn using Ti and Zr substitution is investigated. Rietveld analysis reveals the gradual creation of Nb vacancies to compensate for the n-type doping caused by the substitution of Sb in NbCoSn. This leads to a similar valence electron count (similar to 18.25) for the NbCo1+ySn1-zSbz samples (z > 0). Mass fluctuation disorder due to the Nb vacancies strongly decreases the lattice thermal conductivity from 10 W m(-1) K-1 (z = 0) to 4.5 W m(-1) K-1 (z = 0.5, 1). This is accompanied by a transition to degenerate semiconducting behaviour leading to large power factors, S-2/r = 2.5-3 mW m(-1) K-2 and figures of merit, ZT = 0.25-0.33 at 773 K. Ti and Zr can be used to achieve positive Seebeck values, e.g. S = +150 mu V K-1 for 20% Zr at 773 K. However, the electrical resistivity, rho(323K) = 27-35 m Omega cm, remains too large for these materials to be considered useful p-type materials.
引用
收藏
页码:3979 / 3987
页数:9
相关论文
共 39 条
[1]  
[Anonymous], 1987, GEN STRUCTURE ANAL S
[2]  
[Anonymous], 2005, TABLES PHYS CHEM CON
[3]   A novel p-type half-Heusler from high-throughput transport and defect calculations [J].
Bhattacharya, Sandip ;
Madsen, Georg K. H. .
JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (47) :11261-11268
[4]   Half-Heusler thermoelectrics: a complex class of materials [J].
Bos, Jan-Willem G. ;
Downie, Ruth A. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (43)
[5]   Enhancement of thermoelectric properties in the Nb-Co-Sn half-Heusler/Heusler system through spontaneous inclusion of a coherent second phase [J].
Buffon, Malinda L. C. ;
Laurita, Geneva ;
Verma, Nisha ;
Lamontagne, Leo ;
Ghadbeigi, Leila ;
Lloyd, Demetrious L. ;
Sparks, Taylor D. ;
Pollock, Tresa M. ;
Seshadri, Ram .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (07)
[6]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051
[7]   Uncovering high thermoelectric figure of merit in (Hf,Zr)NiSn half-Heusler alloys [J].
Chen, L. ;
Gao, S. ;
Zeng, X. ;
Dehkordi, A. Mehdizadeh ;
Tritt, T. M. ;
Poon, S. J. .
APPLIED PHYSICS LETTERS, 2015, 107 (04)
[8]   Half-Heusler Alloys for Efficient Thermoelectric Power Conversion [J].
Chen, Long ;
Zeng, Xiaoyu ;
Tritt, Terry M. ;
Poon, S. Joseph .
JOURNAL OF ELECTRONIC MATERIALS, 2016, 45 (11) :5554-5560
[9]   Recent progress of half-Heusler for moderate temperature thermoelectric applications [J].
Chen, Shuo ;
Ren, Zhifeng .
MATERIALS TODAY, 2013, 16 (10) :387-395
[10]   Compositions and thermoelectric properties of XNiSn (X = Ti, Zr, Hf) half-Heusler alloys [J].
Downie, R. A. ;
Barczak, S. A. ;
Smith, R. I. ;
Bos, J. W. G. .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (40) :10534-10542