共 54 条
Structural, thermal and magnetic studies of MgxZn1-xFe2O4 nanoferrites: Study of exchange interactions on magnetic anisotropy
被引:48
作者:
Singh, S. B.
[1
]
Srinivas, Ch.
[2
]
Tirupanyam, B. V.
[3
]
Prajapat, C. L.
[4
]
Singh, M. R.
[4
]
Meena, S. S.
[5
]
Bhatt, Pramod
[5
]
Yusuf, S. M.
[5
]
Sastry, D. L.
[6
]
机构:
[1] Govt Polytech, Dept Phys, Tadepalligudem 534101, India
[2] Sasi Inst Technol & Engn, Dept Phys, Tadepalligudem 534101, India
[3] Sri Aravinda Satajayanthi Govt Degree Coll, Dept Phys, Narayanapuram 534401, India
[4] Bhabha Atom Res Ctr, Tech Phys Div, Mumbai 400085, Maharashtra, India
[5] Bhabha Atom Res Ctr, Div Solid State Phys, Mumbai 400085, Maharashtra, India
[6] Andhra Univ, Dept Phys, Visakhapatnam 530003, Andhra Pradesh, India
关键词:
Ferrite nanoparticles;
Spinel structure;
Calorimetry;
Superparamagnetism;
Exchange coupling energy;
FERRITE NANOPARTICLES;
MOSSBAUER-SPECTROSCOPY;
GLASS-CERAMICS;
NANOCOMPOSITES;
SUBSTITUTION;
D O I:
10.1016/j.ceramint.2016.09.081
中图分类号:
TQ174 [陶瓷工业];
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
Polycrystalline nanoferrites with chemical formula MgxZn1-xFe2O4 (x=0.5, 0.6, 0.7) have been synthesized by co-precipitation technique and then subsequently heated to 800 degrees C in order to investigate structural, thermal and magnetic properties. The samples are characterized by using XRD, FTIR, TGA-DSC, SQUID and Mossbauer spectroscopy techniques. The synergic effect of heat treatment with substitution of Mg2+, results in random variation of lattice parameter (a) and crystallite size (D). FTIR studies revealed the formation of cubic spinel structure. The broadening at octahedral bands for compositions x=0.6 and 0.7 attributes to distribution of ferrite particles of different sizes in these samples. The characteristic feature of hysteresis loops reflects the nature of ferrite particles in the state of superparamagnetism. The saturation magnetization at room temperature has been reported for composition x=0.7 is 44.03 emu/g. The variation of coercivity is due to variation in magnetic anisotropy which is predominately affected by the exchange interactions arising from the nature of nanoparticles. The blocking temperatures are in the range of 10-30 K and their variation is in the line of change in magnetocrystalline anisotropy but not due to variation in crystallite sizes. The Zeeman splitting at tetrahedral (A) and octahedral (B) sites for composition x=0.6 is expected due to increase in size of core of the nanoparticles/or increasing of magnetocrystalline anisotropy. The range of isomer shift values and quadruple splitting values are evident for the presence of Fe3+ ions and the absence of Fee' ions in the present systems. The present ferrite nanoparticles in the superparamagnetic state are the potential candidates for biomedical applications like cancer treatment through hyperthermia. The results are interpreted in terms of cation redistribution presuming exchange coupling energy variation on magnetocrystalline anisotropy.
引用
收藏
页码:19179 / 19186
页数:8
相关论文