Inequalities between Arithmetic-Geometric, Gini, and Toader Means

被引:43
作者
Chu, Yu-Ming [1 ]
Wang, Miao-Kun [1 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
关键词
COMPLETE ELLIPTIC INTEGRALS; BOUNDS;
D O I
10.1155/2012/830585
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find the greatest values p(1), p(2) and least values q(1), q(2) such that the double inequalities Sp(1)(a, b) < M(a, b) < Sq(1)(a, b) and Sp(2)(a, B) < T(a, b) < Sq(2)(a, b) hold for all a, b > 0 with a not equal b and present some new bounds for the complete elliptic integrals. Here M(a, b), T(a, b), and S-p(a, b) are the arithmetic-geometric, Toader, and pth Gini means of two positive numbers a and b, respectively.
引用
收藏
页数:11
相关论文
共 19 条
[1]   Monotonicity theorems and inequalities for the complete elliptic integrals\ [J].
Alzer, H ;
Qiu, SL .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 172 (02) :289-312
[2]   Inequalities for means in two variables [J].
Alzer, H ;
Qiu, SL .
ARCHIV DER MATHEMATIK, 2003, 80 (02) :201-215
[3]  
ANDERSON G. D., 1997, Conformal Invariants, Inequalities, and Quasiconformal Maps
[4]  
[Anonymous], 1991, SIAM REV
[5]  
[Anonymous], 1997, NIEUW ARCHIEF WISKUN
[6]  
[Anonymous], 2004, GEN MATH
[7]  
[Anonymous], 2001, EXPOSITIONES MATH
[8]   An inequality involving the generalized hypergeometric function and the arc length of an ellipse [J].
Barnard, RW ;
Pearce, K ;
Richards, KC .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (03) :693-699
[9]  
Bullen P.S., 1988, MEANS THEIR INEQUALI, V31
[10]   Optimal Lehmer Mean Bounds for the Toader Mean [J].
Chu, Yu-Ming ;
Wang, Miao-Kun .
RESULTS IN MATHEMATICS, 2012, 61 (3-4) :223-229