An important step in the calculation of the triply graded link homology of Khovanov and Rozansky is the determination of the Hochschild homology of Soergel bimodules for SL(n). We present a geometric model for this Hochschild homology for any simple group G, as B-equivariant intersection cohomology of B x B-orbit closures in G. We show that, in type A, these orbit closures are equivariantly formal for the conjugation B-action. We use this fact to show that, in the case where the corresponding orbit closure is smooth, this Hochschild homology is an exterior algebra over a polynomial ring on generators whose degree is explicitly determined by the geometry of the orbit closure, and to describe its Hilbert series, proving a conjecture of Jacob Rasmussen.
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dpto Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dpto Matemat, RA-1428 Buenos Aires, DF, Argentina
Farinati, MA
论文数: 引用数:
h-index:
机构:
Solotar, A
Suárez-Alvarez, M
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dpto Matemat, RA-1428 Buenos Aires, DF, ArgentinaUniv Buenos Aires, Fac Ciencias Exactas & Nat, Dpto Matemat, RA-1428 Buenos Aires, DF, Argentina
机构:
Fac Ciencias Exactas & Nat Buenos Aires, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaFac Ciencias Exactas & Nat Buenos Aires, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina
Guccione, JA
Guccione, JJ
论文数: 0引用数: 0
h-index: 0
机构:
Fac Ciencias Exactas & Nat Buenos Aires, Dept Matemat, RA-1428 Buenos Aires, DF, ArgentinaFac Ciencias Exactas & Nat Buenos Aires, Dept Matemat, RA-1428 Buenos Aires, DF, Argentina