A geometric model for Hochschild homology of Soergel bimodules

被引:16
|
作者
Webster, Ben [1 ]
Williamson, Geordie [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Freiburg, Math Inst, D-79106 Freiburg, Germany
关键词
Hochschild homology; Khovanov-Rozansky homology; Soergel bimodule;
D O I
10.2140/gt.2008.12.1243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An important step in the calculation of the triply graded link homology of Khovanov and Rozansky is the determination of the Hochschild homology of Soergel bimodules for SL(n). We present a geometric model for this Hochschild homology for any simple group G, as B-equivariant intersection cohomology of B x B-orbit closures in G. We show that, in type A, these orbit closures are equivariantly formal for the conjugation B-action. We use this fact to show that, in the case where the corresponding orbit closure is smooth, this Hochschild homology is an exterior algebra over a polynomial ring on generators whose degree is explicitly determined by the geometry of the orbit closure, and to describe its Hilbert series, proving a conjecture of Jacob Rasmussen.
引用
收藏
页码:1243 / 1263
页数:21
相关论文
共 50 条
  • [1] Triply-graded link homology and Hochschild homology of Soergel bimodules
    Khovanov, Mikhail
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2007, 18 (08) : 869 - 885
  • [2] THE HODGE THEORY OF SOERGEL BIMODULES (from Soergel and Elias-Williamson)
    Riche, Simon
    ASTERISQUE, 2019, (414) : 125 - 165
  • [3] THE HOMOLOGY OF DIGRAPHS AS A GENERALIZATION OF HOCHSCHILD HOMOLOGY
    Turner, Paul
    Wagner, Emmanuel
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (02)
  • [4] Leibniz and Hochschild homology
    Altawallbeh, Zuhier
    COMMUNICATIONS IN ALGEBRA, 2018, 46 (01) : 62 - 68
  • [5] Hochschild and cyclic homology via functor homology
    Pirashvili, T
    Richter, B
    K-THEORY, 2002, 25 (01): : 39 - 49
  • [6] Hochschild homology and split pairs
    Bergh, Petter Andreas
    Madsen, Dag
    BULLETIN DES SCIENCES MATHEMATIQUES, 2010, 134 (07): : 665 - 676
  • [7] Real topological Hochschild homology
    Dotto, Emanuele
    Moi, Kristian
    Patchkoria, Irakli
    Reeh, Sune Precht
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (01) : 63 - 152
  • [8] HOCHSCHILD HOMOLOGY AND TRUNCATED CYCLES
    Bergh, Petter Andreas
    Han, Yang
    Madsen, Dag
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (04) : 1133 - 1139
  • [9] Hochschild homology of singular algebras
    Brasselet, JP
    Legrand, A
    Teleman, N
    K-THEORY, 2003, 29 (01): : 1 - 25
  • [10] Hochschild homology of structured algebras
    Wahl, Nathalie
    Westerland, Craig
    ADVANCES IN MATHEMATICS, 2016, 288 : 240 - 307