A new unbiased minimum variance observer for stochastic LTV systems with unknown inputs

被引:1
作者
Meyer, Luc [1 ]
Ichalal, Dalil [2 ]
Vigneron, Vincent [2 ]
机构
[1] Univ Paris Saclay, ONERA, Chemin Huniere, F-91120 Palaiseau, France
[2] Univ Paris Saclay, Univ Evry Val dEssonne, IBISC Lab, 43 Rue Pelvoux, F-91080 Courcouronnes, France
关键词
state estimation; stochastic systems; unknown input; linear time varying systems; discrete-time systems; STATE ESTIMATION; LINEAR-SYSTEMS; FILTER; EXTENSION;
D O I
10.1093/imamci/dnz009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper is devoted to the state and input estimation of a linear time varying system in the presence of an unknown input (UI) in both state and measurement equations, and affected by Gaussian noises. The classical rank condition used in this kind of approach is relaxed in order to be able to be used in a wider range of systems. A state observer, that is an unbiased estimator with minimum error variance, is proposed. Then a UI observer is constructed, in order to be a best linear unbiased estimator, it follows a unique construction whether the direct feedthrough matrix is null or not. In a sense the proposed approach, generalizes and unifies the existing ones. Besides, a stability result is given for linear time invariant systems, which is a novelty for unbiased minimum variance observers relaxing the classical rank condition.
引用
收藏
页码:475 / 496
页数:22
相关论文
共 32 条
  • [1] Anderson B. D. O., 1979, Optimal filtering
  • [2] [Anonymous], 17 MED C CONTR AUT M
  • [3] Input Estimation for Nonminimum-Phase Systems With Application to Acceleration Estimation for a Maneuvering Vehicle
    Ansari, Ahmad
    Bernstein, Dennis S.
    [J]. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2019, 27 (04) : 1596 - 1607
  • [4] A novel approach to unknown input filter design for discrete-time linear systems
    Charandabi, Behnam Allahverdi
    Marquez, Horacio J.
    [J]. AUTOMATICA, 2014, 50 (11) : 2835 - 2839
  • [5] Unbiased minimum-variance state estimation for linear systems with unknown input
    Cheng, Yue
    Ye, Hao
    Wang, Yongqiang
    Zhou, Donghual
    [J]. AUTOMATICA, 2009, 45 (02) : 485 - 491
  • [6] Unbiased minimum variance estimation for systems with unknown exogenous inputs
    Darouach, M
    Zasadzinski, M
    [J]. AUTOMATICA, 1997, 33 (04) : 717 - 719
  • [7] Extension of minimum variance estimation for systems with unknown inputs
    Darouach, M
    Zasadzinski, A
    Boutayeb, M
    [J]. AUTOMATICA, 2003, 39 (05) : 867 - 876
  • [8] Unbiased minimum-variance input and state estimation for linear discrete-time systems with direct feedthrough
    Gillijns, Steven
    De Moor, Bart
    [J]. AUTOMATICA, 2007, 43 (05) : 934 - 937
  • [9] Unbiased minimum-variance input and state estimation for linear discrete-time systems
    Gillijns, Steven
    De Moor, Bart
    [J]. AUTOMATICA, 2007, 43 (01) : 111 - 116
  • [10] Grewal M. S., 2011, Kalman filtering