A new unbiased minimum variance observer for stochastic LTV systems with unknown inputs
被引:1
作者:
Meyer, Luc
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, ONERA, Chemin Huniere, F-91120 Palaiseau, FranceUniv Paris Saclay, ONERA, Chemin Huniere, F-91120 Palaiseau, France
Meyer, Luc
[1
]
Ichalal, Dalil
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Univ Evry Val dEssonne, IBISC Lab, 43 Rue Pelvoux, F-91080 Courcouronnes, FranceUniv Paris Saclay, ONERA, Chemin Huniere, F-91120 Palaiseau, France
Ichalal, Dalil
[2
]
Vigneron, Vincent
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Saclay, Univ Evry Val dEssonne, IBISC Lab, 43 Rue Pelvoux, F-91080 Courcouronnes, FranceUniv Paris Saclay, ONERA, Chemin Huniere, F-91120 Palaiseau, France
Vigneron, Vincent
[2
]
机构:
[1] Univ Paris Saclay, ONERA, Chemin Huniere, F-91120 Palaiseau, France
[2] Univ Paris Saclay, Univ Evry Val dEssonne, IBISC Lab, 43 Rue Pelvoux, F-91080 Courcouronnes, France
state estimation;
stochastic systems;
unknown input;
linear time varying systems;
discrete-time systems;
STATE ESTIMATION;
LINEAR-SYSTEMS;
FILTER;
EXTENSION;
D O I:
10.1093/imamci/dnz009
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
This paper is devoted to the state and input estimation of a linear time varying system in the presence of an unknown input (UI) in both state and measurement equations, and affected by Gaussian noises. The classical rank condition used in this kind of approach is relaxed in order to be able to be used in a wider range of systems. A state observer, that is an unbiased estimator with minimum error variance, is proposed. Then a UI observer is constructed, in order to be a best linear unbiased estimator, it follows a unique construction whether the direct feedthrough matrix is null or not. In a sense the proposed approach, generalizes and unifies the existing ones. Besides, a stability result is given for linear time invariant systems, which is a novelty for unbiased minimum variance observers relaxing the classical rank condition.