Randomized algorithms in robust control

被引:0
作者
Calafiore, G [1 ]
Dabbene, F [1 ]
Tempo, R [1 ]
机构
[1] Politecn Torino, Dipartimento Automat & Informat, Turin, Italy
来源
42ND IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-6, PROCEEDINGS | 2003年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The probabilistic approach to analysis and design of robust control systems is an emerging philosophy that gained increasing interest in recent years, see e.g. the book [24]. Opposed to the so-far dominating paradigm of deterministic worst-case robustness, the probabilistic approach presents itself as a natural tool to deal with the random character of uncertainties affecting control systems. In this paper, we discuss randomized algorithms for probabilistic robustness, with particular attention to recently developed methodologies for controller synthesis.
引用
收藏
页码:1908 / 1913
页数:6
相关论文
共 28 条
[11]   Probabilistic design of LPV control systems [J].
Fujisaki, Y ;
Dabbene, F ;
Tempo, R .
AUTOMATICA, 2003, 39 (08) :1323-1337
[13]   An ellipsoid algorithm for probabilistic robust controller design [J].
Kanev, S ;
De Schutter, B ;
Verhaegen, M .
SYSTEMS & CONTROL LETTERS, 2003, 49 (05) :365-375
[14]  
Khargonekar P, 1996, IEEE DECIS CONTR P, P3470, DOI 10.1109/CDC.1996.573700
[15]   Improved sample complexity estimates for statistical learning control of uncertain systems [J].
Koltchinskii, V ;
Abdallah, CT ;
Ariola, M ;
Dorato, P ;
Panchenko, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (12) :2383-2388
[16]  
Kushner H. J., 1997, STOCHASTIC APPROXIMA
[17]  
LAGOA CM, 2001, P IEEE C DEC CONTR O
[18]  
NEMIROVSKII A, 2003, P IEEE C DEC CONTR M
[19]  
Oishi Y, 2001, IEEE DECIS CONTR P, P2025, DOI 10.1109/CDC.2001.981208
[20]  
Pollard D., 2012, Convergence of Stochastic Processes