Change-point analysis with bathtub shape for the exponential distribution

被引:10
作者
Cai, Xia [1 ,2 ]
Said, Khamis Khalid [1 ]
Ning, Wei [3 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
[2] Hebei Univ Sci & Technol, Sch Sci, Shijiazhuang, Peoples R China
[3] Bowling Green State Univ, Dept Math & Stat, Bowling Green, KY USA
基金
中国国家自然科学基金;
关键词
Change point; bathtub shape; information approach; likelihood ratio; exponential distribution; LINEAR TREND;
D O I
10.1080/02664763.2016.1143455
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Likelihood ratio type test statistic and Schwarz information criterion statistics are proposed for detecting possible bathtub-shaped changes in the parameter in a sequence of exponential distributions. The asymptotic distribution of likelihood ratio type statistic under the null hypothesis and the testing procedure based on Schwarz information criterion are derived. Numerical critical values and powers of two methods are tabulated for certain selected values of the parameters. The tests are applied to detect the change points for the predator data and Stanford heart transplant data.
引用
收藏
页码:2740 / 2750
页数:11
相关论文
共 11 条
[1]  
Chen J, 2010, PARAMETRIC STAT CHAN
[2]  
Gupta AK, 2001, J STAT PLAN INFER, V93, P181
[3]   THE LIKELIHOOD RATIO TEST FOR THE CHANGE POINT PROBLEM FOR EXPONENTIALLY DISTRIBUTED RANDOM-VARIABLES [J].
HACCOU, P ;
MEELIS, E ;
VANDEGEER, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 27 (01) :121-139
[4]  
Kalbfleisch JD, 2011, STAT ANAL FAILURE TI
[5]   Tests for an epidemic change in a sequence of exponentially distributed random variables [J].
Ramanayake, A ;
Gupta, AK .
BIOMETRICAL JOURNAL, 2003, 45 (08) :946-958
[6]   Change points with linear trend followed by abrupt change for the exponential distribution [J].
Ramanayake, A ;
Gupta, AK .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2002, 72 (04) :263-278
[7]   Testing for a change point in a sequence of exponential random variables with repeated values [J].
Ramanayake, Asoka ;
Gupta, Arjun K. .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (1-2) :191-199
[8]   ESTIMATING DIMENSION OF A MODEL [J].
SCHWARZ, G .
ANNALS OF STATISTICS, 1978, 6 (02) :461-464
[9]  
Sen A. K., 1980, TECH REP
[10]  
Sen A. K., 1975, ANN STAT, V3, P173