Pedestrian Motion Trajectory Prediction With Stereo-Based 3D Deep Pose Estimation and Trajectory Learning

被引:24
|
作者
Zhong, Jianqi [1 ]
Sun, Hao [2 ]
Cao, Wenming [1 ]
He, Zhihai [2 ]
机构
[1] Shenzhen Univ, Sch Informat Engn, Shenzhen 518060, Peoples R China
[2] Univ Missouri, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
关键词
Trajectory prediction; deep learning; pose estimation; stereo vision;
D O I
10.1109/ACCESS.2020.2969994
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Existing methods for pedestrian motion trajectory prediction are learning and predicting the trajectories in the 2D image space. In this work, we observe that it is much more efficient to learn and predict pedestrian trajectories in the 3D space since the human motion occurs in the 3D physical world and and their behavior patterns are better represented in the 3D space. To this end, we use a stereo camera system to detect and track the human pose with deep neural networks. During pose estimation, these twin deep neural networks satisfy the stereo consistence constraint. We adapt the existing SocialGAN method to perform pedestrian motion trajectory prediction from the 2D to the 3D space. Our extensive experimental results demonstrate that our proposed method significantly improves the pedestrian trajectory prediction performance, outperforming existing state-of-the-art methods.
引用
收藏
页码:23480 / 23486
页数:7
相关论文
共 50 条
  • [31] Method for 3D motion parameter measurement based on pose estimation
    Wang L.-M.
    Wu X.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (07): : 2099 - 2108
  • [32] Trajectory prediction of flying vehicles based on deep learning methods
    Minghu Tan
    Hong Shen
    Kang Xi
    Bin Chai
    Applied Intelligence, 2023, 53 : 13621 - 13642
  • [33] 3D pose estimation and future motion prediction from 2D images
    Yang, Ji
    Ma, Youdong
    Zuo, Xinxin
    Wang, Sen
    Gong, Minglun
    Cheng, Li
    PATTERN RECOGNITION, 2022, 124
  • [34] Deep learning for 3D human pose estimation and mesh recovery: A survey
    Liu, Yang
    Qiu, Changzhen
    Zhang, Zhiyong
    NEUROCOMPUTING, 2024, 596
  • [35] The Smart Door System Using Pedestrian Trajectory Prediction Based on Machine Learning
    Choi J.-H.
    Kim D.-J.
    Kim J.-J.
    Transactions of the Korean Institute of Electrical Engineers, 2024, 73 (03): : 618 - 624
  • [36] Excavator 3D pose estimation using deep learning and hybrid datasets
    Assadzadeh, Amin
    Arashpour, Mehrdad
    Li, Heng
    Hosseini, Reza
    Elghaish, Faris
    Baduge, Shanaka
    ADVANCED ENGINEERING INFORMATICS, 2023, 55
  • [37] An integrated framework for accurate trajectory prediction based on deep learning
    Zhao, Shuo
    Li, Zhaozhi
    Zhu, Zikun
    Chang, Charles
    Li, Xin
    Chen, Ying-Chi
    Yang, Bo
    APPLIED INTELLIGENCE, 2024, 54 (20) : 10161 - 10175
  • [38] Trajectory prediction of flying vehicles based on deep learning methods
    Tan, Minghu
    Shen, Hong
    Xi, Kang
    Chai, Bin
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13621 - 13642
  • [39] Incorporating Driving Knowledge in Deep Learning Based Vehicle Trajectory Prediction: A Survey
    Ding, Zhezhang
    Zhao, Huijing
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (08): : 3996 - 4015
  • [40] Towards Deep Learning-based 6D Bin Pose Estimation in 3D Scans
    Gajdosech, Lukas
    Kocur, Viktor
    Stuchlik, Martin
    Hudec, Lukas
    Madaras, Martin
    PROCEEDINGS OF THE 17TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISAPP), VOL 4, 2022, : 545 - 552