Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110-155 km) at McMurdo (77.8°S, 166.7°E), Antarctica

被引:100
作者
Chu, Xinzhao [1 ,2 ]
Yu, Zhibin [1 ,2 ]
Gardner, Chester S. [3 ]
Chen, Cao [1 ,2 ]
Fong, Weichun [1 ,2 ]
机构
[1] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[2] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
UPPER-ATMOSPHERE; CHEMISTRY; ARECIBO; RADAR; MODEL; ION;
D O I
10.1029/2011GL050016
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We report the first lidar observations of neutral Fe layers with gravity wave signatures in the thermosphere from 110-155 km at McMurdo, Antarctica in May 2011. The thermospheric Fe densities are low, ranging from similar to 200 cm(-3) at 120 km to similar to 20 cm(-3) at 150 km. The measured temperatures from 115-135 km are considerably warmer than MSIS and appear to be related to Joule heating enhanced by aurora. The observed waves originate in the lower atmosphere and show periods of 1.5-2 h through 77-155 km. The vertical wavelength increases from similar to 13 km at 115 km to similar to 70 km at 150 km altitude. These wave characteristics are strikingly similar to the traveling ionospheric disturbances caused by internal gravity waves. The thermospheric Fe layers are likely formed through the neutralization of vertically converged Fe(+) layers that descend in height following the gravity wave downward phase progression. Citation: Chu, X., Z. Yu, C. S. Gardner, C. Chen, and W. Fong (2011), Lidar observations of neutral Fe layers and fast gravity waves in the thermosphere (110-155 km) at McMurdo (77.8 degrees S, 166.7 degrees E), Antarctica, Geophys. Res. Lett., 38, L23807, doi: 10.1029/2011GL050016.
引用
收藏
页数:6
相关论文
共 24 条
[1]   NUMERICAL-SIMULATION OF THE FORMATION OF THIN IONIZATION LAYERS AT HIGH-LATITUDES [J].
BRISTOW, WA ;
WATKINS, BJ .
GEOPHYSICAL RESEARCH LETTERS, 1991, 18 (03) :404-407
[2]   A THEORETICAL-STUDY OF THERMOSPHERIC COMPOSITION PERTURBATIONS DURING AN IMPULSIVE GEOMAGNETIC STORM [J].
BURNS, AG ;
KILLEEN, TL ;
ROBLE, RG .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1991, 96 (A8) :14153-14167
[3]  
Carter LN, 1999, ANN GEOPHYS-ATM HYDR, V17, P190, DOI 10.1007/s00585-999-0190-6
[4]   First lidar observations of polar mesospheric clouds and Fe temperatures at McMurdo (77.8°S, 166.7°E), Antarctica [J].
Chu, Xinzhao ;
Huang, Wentao ;
Fong, Weichun ;
Yu, Zhibin ;
Wang, Zhangjun ;
Smith, John A. ;
Gardner, Chester S. .
GEOPHYSICAL RESEARCH LETTERS, 2011, 38
[5]   Fe Boltzmann temperature lidar: design, error analysis, and initial results at the North and South Poles [J].
Chu, XZ ;
Pan, WL ;
Papen, GC ;
Gardner, CS ;
Gelbwachs, JA .
APPLIED OPTICS, 2002, 41 (21) :4400-4410
[6]   Arecibo's thermospheric gravity waves and the case for an ocean source [J].
Djuth, F. T. ;
Zhang, L. D. ;
Livneh, D. J. ;
Seker, I. ;
Smith, S. M. ;
Sulzer, M. P. ;
Mathews, J. D. ;
Walterscheid, R. L. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[7]   An idealized ray model of gravity wave-tidal interactions [J].
Eckermann, SD ;
Marks, CJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1996, 101 (D16) :21195-21212
[8]   THE UPPER ATMOSPHERE IN MOTION [J].
HINES, CO .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1963, 89 (379) :1-42
[9]   The mesospheric metal layer topside:: Examples of simultaneous metal observations [J].
Höffner, J ;
Friedman, JS .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2005, 67 (13) :1226-1237
[10]   First observation of micrometeoroid differential ablation in the atmosphere [J].
Janches, D. ;
Dyrud, L. P. ;
Broadley, S. L. ;
Plane, J. M. C. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36