DIFFUSION ESTIMATION FROM MULTISCALE DATA BY OPERATOR EIGENPAIRS

被引:32
|
作者
Crommelin, Daan [1 ]
Vanden-Eijnden, Eric [2 ]
机构
[1] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
parameter estimation; diffusion process; stochastic differential equation; generator; discrete sampling; multiscale analysis; homogenization; subsampling; MAXIMUM-LIKELIHOOD-ESTIMATION; DEPENDENT DIFFUSION; SCALAR DIFFUSIONS; FREQUENCY DATA; INFERENCE; DYNAMICS; EQUATIONS; TIME; APPROXIMATIONS; MODELS;
D O I
10.1137/100795917
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a new procedure for the estimation of diffusion processes from discretely sampled data. It is based on the close relation between eigenpairs of the diffusion operator L and those of the conditional expectation operator P-t, a relation stemming from the semigroup structure P-t = exp(tL) for t >= 0. It allows for estimation without making time discretization errors, an aspect that is particularly advantageous in the case of data with low sampling frequency. After estimating eigenpairs of L via eigenpairs of P-t, we infer the drift and diffusion functions that determine L by fitting L to the estimated eigenpairs using a convex optimization procedure. We present numerical examples in which we apply the procedure to one- and two-dimensional diffusions, reversible as well as nonreversible. In the second part of the paper, we consider estimation of coarse-grained (homogenized) diffusion processes from multiscale data. We show that eigenpairs of the homogenized diffusion operator are asymptotically close to eigenpairs of the underlying multiscale diffusion operator. This implies that we can infer the correct homogenized process from data of the multiscale process, using the estimation procedure discussed in the first part of the paper. This is illustrated with numerical examples.
引用
收藏
页码:1588 / 1623
页数:36
相关论文
共 50 条
  • [41] SPECTRAL ESTIMATION OF HAWKES PROCESSES FROM COUNT DATA
    Cheysson, Felix
    Lang, Gabriel
    ANNALS OF STATISTICS, 2022, 50 (03) : 1722 - 1746
  • [42] Large deviations for multiscale diffusion via weak convergence methods
    Dupuis, Paul
    Spiliopoulos, Konstantinos
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (04) : 1947 - 1987
  • [43] On the Estimation of Jump-Diffusion Models Using Intraday Data: A Filtering-Based Approach
    Begin, Jean-Francois
    Amaya, Diego
    Gauthier, Genevieve
    Malette, Marie-Eve
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2020, 11 (04): : 1168 - 1208
  • [44] FILTERS FOR IMPROVEMENT OF MULTISCALE DATA FROM ATOMISTIC SIMULATIONS
    Gardnert, David J.
    Reynolds, Daniel R.
    MULTISCALE MODELING & SIMULATION, 2017, 15 (01) : 1 - 28
  • [45] Adaptive estimation of an ergodic diffusion process based on sampled data
    Uchida, Masayuki
    Yoshida, Nakahiro
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2012, 122 (08) : 2885 - 2924
  • [46] Parameter Estimation of Markovian Arrivals with Utilization Data
    Li, Chen
    Zheng, Junjun
    Okamura, Hiroyuki
    Dohi, Tadashi
    IEICE TRANSACTIONS ON COMMUNICATIONS, 2022, E105B (01) : 1 - 10
  • [47] MONTE CARLO MAXIMUM LIKELIHOOD ESTIMATION FOR DISCRETELY OBSERVED DIFFUSION PROCESSES
    Beskos, Alexandros
    Papaspiliopoulos, Omiros
    Roberts, Gareth
    ANNALS OF STATISTICS, 2009, 37 (01) : 223 - 245
  • [48] Parameter estimation from single patient, single time-point sequencing data of recurrent tumors
    Leder, Kevin
    Sun, Ruping
    Wang, Zicheng
    Zhang, Xuanming
    JOURNAL OF MATHEMATICAL BIOLOGY, 2024, 89 (05)
  • [49] Maximum likelihood estimation for multiscale Ornstein-Uhlenbeck processes
    Zhang, Fan
    Papavasiliou, Anastasia
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (06) : 807 - 835
  • [50] Dimension Reduction in Statistical Estimation of Partially Observed Multiscale Processes
    Papanicolaou, Andrew
    Spiliopoulos, Konstantinos
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2017, 5 (01): : 1220 - 1247