DIFFUSION ESTIMATION FROM MULTISCALE DATA BY OPERATOR EIGENPAIRS

被引:32
|
作者
Crommelin, Daan [1 ]
Vanden-Eijnden, Eric [2 ]
机构
[1] Ctr Wiskunde & Informat, Amsterdam, Netherlands
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
parameter estimation; diffusion process; stochastic differential equation; generator; discrete sampling; multiscale analysis; homogenization; subsampling; MAXIMUM-LIKELIHOOD-ESTIMATION; DEPENDENT DIFFUSION; SCALAR DIFFUSIONS; FREQUENCY DATA; INFERENCE; DYNAMICS; EQUATIONS; TIME; APPROXIMATIONS; MODELS;
D O I
10.1137/100795917
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we present a new procedure for the estimation of diffusion processes from discretely sampled data. It is based on the close relation between eigenpairs of the diffusion operator L and those of the conditional expectation operator P-t, a relation stemming from the semigroup structure P-t = exp(tL) for t >= 0. It allows for estimation without making time discretization errors, an aspect that is particularly advantageous in the case of data with low sampling frequency. After estimating eigenpairs of L via eigenpairs of P-t, we infer the drift and diffusion functions that determine L by fitting L to the estimated eigenpairs using a convex optimization procedure. We present numerical examples in which we apply the procedure to one- and two-dimensional diffusions, reversible as well as nonreversible. In the second part of the paper, we consider estimation of coarse-grained (homogenized) diffusion processes from multiscale data. We show that eigenpairs of the homogenized diffusion operator are asymptotically close to eigenpairs of the underlying multiscale diffusion operator. This implies that we can infer the correct homogenized process from data of the multiscale process, using the estimation procedure discussed in the first part of the paper. This is illustrated with numerical examples.
引用
收藏
页码:1588 / 1623
页数:36
相关论文
共 50 条
  • [32] Bias reduction in the estimation of diffusion processes from discrete observations
    Carlos Jimenez, Juan
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2020, 37 (04) : 1468 - 1505
  • [33] Parametric Estimation of Diffusion Processes: A Review and Comparative Study
    Lopez-Perez, Alejandra
    Febrero-Bande, Manuel
    Gonzalez-Manteiga, Wencesalo
    MATHEMATICS, 2021, 9 (08)
  • [34] Quasi-likelihood estimation of a threshold diffusion process
    Su, Fei
    Chan, Kung-Sik
    JOURNAL OF ECONOMETRICS, 2015, 189 (02) : 473 - 484
  • [35] Nonparametric operator-regularized covariance function estimation for functional data
    Wong, Raymond K. W.
    Zhang, Xiaoke
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2019, 131 : 131 - 144
  • [36] Scale-insensitive estimation of speed and distance traveled from animal tracking data
    Noonan, Michael J.
    Fleming, Christen H.
    Akre, Thomas S.
    Drescher-Lehman, Jonathan
    Gurarie, Eliezer
    Harrison, Autumn-Lynn
    Kays, Roland
    Calabrese, Justin M.
    MOVEMENT ECOLOGY, 2019, 7 (01)
  • [37] Flexible methods for reliability estimation using aggregate failure-time data
    Karimi, Samira
    Liao, Haitao
    Fan, Neng
    IISE TRANSACTIONS, 2021, 53 (01) : 101 - 115
  • [38] Combining Multisource Data and Machine Learning Approaches for Multiscale Estimation of Forest Biomass
    Hong, Yifeng
    Xu, Jiaming
    Wu, Chunyan
    Pang, Yong
    Zhang, Shougong
    Chen, Dongsheng
    Yang, Bo
    FORESTS, 2023, 14 (11):
  • [39] A parameter estimation framework for Multiscale Kalman Smoother algorithm in precipitation data fusion
    Wang, Shugong
    Liang, Xu
    WATER RESOURCES RESEARCH, 2014, 50 (11) : 8675 - 8693
  • [40] Parameter estimation using macroscopic diffusion MRI signal models
    Hang Tuan Nguyen
    Grebenkov, Denis
    Dang Van Nguyen
    Poupon, Cyril
    Le Bihan, Denis
    Li, Jing-Rebecca
    PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (08) : 3389 - 3413