A duality principle corresponding to the parabolic equations

被引:6
作者
Il'yasov, Yavdat [1 ]
机构
[1] Ufa State Aviat Tech Univ, Ufa, Russia
基金
俄罗斯基础研究基金会;
关键词
dual variational principle; nonlinearity indefinite in sign; blow-up;
D O I
10.1016/j.physd.2007.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our principal problem consists in finding threshold values for a family of blow-up solutions of nonlinear evolution problems depending on a real parameter;. We seek to obtain the solution of the problem in a constructive and unified approach which would provide the answer for the following general question: Is there is a constructive method for finding the threshold values? We illustrate our approach by means of an example of finding. a threshold value for a family of parabolic equations with nonlinearity indefinite in sign. In the main result, the threshold value is expressed via explicitly specified dual variational principles of a new type. (c) 2007 Elsevier B. V. All rights reserved.
引用
收藏
页码:692 / 698
页数:7
相关论文
共 19 条
[1]  
APPEL J, 2004, GRUYTER SERIES NONLI, V10
[2]  
Berbernes J., 1989, APPL MATH SCI, V83
[3]  
Berestycki H., 1995, Nonlinear Differ Equ Appl, V2, P553, DOI [DOI 10.1007/BF01210623, 10.1007/BF01210623]
[4]  
Bizon P, 2001, J NONLINEAR MATH PHY, V8, P35, DOI 10.2991/jnmp.2001.8.Supplement.7
[5]  
Brezis H., 1996, Adv. Differential Equations, V1, P73
[6]   VARIATIONAL PRINCIPLE [J].
EKELAND, I .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 47 (02) :324-353
[7]  
FRIEDMAN A, 1965, APPL NONLINEAR PARTI, P3
[8]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[9]  
Galaktionov VA, 2002, DISCRETE CONT DYN-A, V8, P399
[10]  
Gelfand I.M., 1963, Amer. Math.Soc. Transl., V2, P295