A Divided Latent Class analysis for Big Data

被引:5
作者
Abarda, Abdallah [1 ]
Bentaleb, Youssef [1 ]
Mharzi, Hassan [1 ]
机构
[1] Ibn Tofail Univ, Natl Sch Appl Sci, EECOMAS Lab, Kenitra, Morocco
来源
14TH INTERNATIONAL CONFERENCE ON MOBILE SYSTEMS AND PERVASIVE COMPUTING (MOBISPC 2017) / 12TH INTERNATIONAL CONFERENCE ON FUTURE NETWORKS AND COMMUNICATIONS (FNC 2017) / AFFILIATED WORKSHOPS | 2017年 / 110卷
关键词
Latent class analysis; Massive data; Multivariate Categorical data; Statistical methods; Structural equation modeling;
D O I
10.1016/j.procs.2017.06.111
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Statistical methods are a fundamental component in the big data environment. Among these methods: Latent class analysis (LCA), which is a subset of structural equation modeling, used to create classes in the case of multivariate categorical data. The use of this method to analyze massive data sets represents an expensive computational task. In this paper, we propose a Divide-and-Conquer approach for LCA model, the aim is to estimate the LCA parameters when this method is used for massive data sets. The performance of our approach will be verified by carrying out a numerical simulation. (C) 2017 The Authors. Published by Elsevier B.V.
引用
收藏
页码:428 / 433
页数:6
相关论文
共 13 条
[1]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[2]   A general framework for mining massive data streams [J].
Domingos, P ;
Hulten, G .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2003, 12 (04) :945-949
[3]  
Jun S., 2015, INT J SOFTWARE ENG I, V9, P21, DOI [10.14257/ijseia.2015.9.5.03, DOI 10.14257/IJSEIA.2015.9.5.03]
[4]  
Lazarsfeld PF., 1968, LATENT STRUCTURE ANA
[5]   Statistical inference in massive data sets [J].
Li, Runze ;
Lin, Dennis K. J. ;
Li, Bing .
APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2013, 29 (05) :399-409
[6]   poLCA: An R Package for Polytomous Variable Latent Class Analysis [J].
Linzer, Drew A. ;
Lewis, Jeffrey B. .
JOURNAL OF STATISTICAL SOFTWARE, 2011, 42 (10) :1-29
[7]  
Mharzi H., 2015, CONT ENG SCI, V8, P1529
[8]   Big data analytics: six techniques [J].
Shu, Hong .
GEO-SPATIAL INFORMATION SCIENCE, 2016, 19 (02) :119-128
[9]   Evaluating latent class analysis models in qualitative phenotype identification [J].
Yang, CC .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (04) :1090-1104
[10]   The Hydrogen Molecular Ion in Strong Fields Using the B-Spline Method [J].
Zhang Yue-Xia ;
Liu Qiang ;
Shi Ting-Yun .
CHINESE PHYSICS LETTERS, 2013, 30 (04)