Instanton strings and hyper-Kahler geometry

被引:145
作者
Dijkgraaf, R
机构
[1] Univ Amsterdam, Dept Math & Phys, NL-1018 TV Amsterdam, Netherlands
[2] Univ Utrecht, Spinoza Inst, NL-3508 TD Utrecht, Netherlands
关键词
D O I
10.1016/S0550-3213(98)00869-4
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss two-dimensional sigma models on moduli spaces of instantons on K3 surfaces, These N = (4, 4) superconformal field theories describe the near-horizon dynamics of the D1DS-brane system and are dual to string theory on AdS(3). We derive a precise map relating the moduli of the K3 type IIB string compactification to the moduli of these conformal field theories and the corresponding classical hyper-Kahler geometry. We conclude that in the absence of background gauge fields, the metric on the instanton moduli spaces degenerates exactly to the orbifold symmetric product of K3. Turning on a self-dual NS B-field deforms this symmetric product to a manifold that is diffeomorphic to the Hilbert scheme. We also comment on the mathematical applications of string duality to the global issues of deformations of hyper-Kahler manifolds, (C) 1999 Elsevier Science B.V.
引用
收藏
页码:545 / 571
页数:27
相关论文
共 42 条
[1]  
Aharony O., 1998, ADV THEOR MATH PHYS, V1, P148, DOI DOI 10.4310/ATMP.1997.V1.N1.A5
[2]  
Aharony O., 1998, ADV THEOR MATH PHYS, V2, P119, DOI [10.4310/ATMP.1998.v2.n1.a5[hep-th/9712117, DOI 10.4310/ATMP.1998.V2.N1.A5]
[3]   MULTIPLE MIRROR MANIFOLDS AND TOPOLOGY CHANGE IN STRING THEORY [J].
ASPINWALL, PS ;
GREENE, BR ;
MORRISON, DR .
PHYSICS LETTERS B, 1993, 303 (3-4) :249-259
[4]  
BEAUVILLE A, 1983, J DIFFER GEOM, V18, P755
[5]   D-strings on D-manifolds [J].
Bershadsky, M ;
Vafa, C ;
Sadov, V .
NUCLEAR PHYSICS B, 1996, 463 (2-3) :398-414
[6]   TOPOLOGICAL REDUCTION OF 4D SYM TO 2D SIGMA-MODELS [J].
BERSHADSKY, M ;
JOHANSEN, A ;
SADOV, V ;
VAFA, C .
NUCLEAR PHYSICS B, 1995, 448 (1-2) :166-186
[7]   AUTOMORPHIC-FORMS ON O-S+2,O-2(R) AND INFINITE PRODUCTS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1995, 120 (01) :161-213
[8]   N = 2 LANDAU-GINZBURG VS CALABI-YAU SIGMA-MODELS - NONPERTURBATIVE ASPECTS [J].
CECOTTI, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1991, 6 (10) :1749-1813
[9]  
Cheah J., 1996, J ALGEBRAIC GEOM, V5, P479
[10]   Elliptic genera of symmetric products and second quantized strings [J].
Dijkgraaf, R ;
Moore, G ;
Verlinde, E ;
Verlinde, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (01) :197-209