Systems Pharmacology: Defining the Interactions of Drug Combinations

被引:57
作者
van Hasselt, J. G. Coen [1 ,2 ]
Iyengar, Ravi [1 ]
机构
[1] Icahn Sch Med Mt Sinai, Mt Sinai Inst Syst Biomed, Dept Pharmacol Sci, Syst Biol Ctr, New York, NY 10029 USA
[2] Leiden Univ, Leiden Acad Ctr Drug Res, Div Syst Biomed & Pharmacol, NL-2333 Leiden, Netherlands
来源
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 59 | 2019年 / 59卷
基金
美国国家卫生研究院;
关键词
systems pharmacology; combination therapy; pharmacodynamics; systems biology; modeling; QSP; quantitative systems pharmacology; MICROPHYSIOLOGICAL SYSTEMS; ANTICANCER DRUGS; CANCER-THERAPY; IPS CELLS; NETWORK; DISCOVERY; DISEASE; BIOLOGY; DESIGN; MODEL;
D O I
10.1146/annurev-pharmtox-010818-021511
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The majority of diseases are associated with alterations in multiple molecular pathways and complex interactions at the cellular and organ levels. Single-target monotherapies therefore have intrinsic limitations with respect to their maximum therapeutic benefits. The potential of combination drug therapies has received interest for the treatment of many diseases and is well established in some areas, such as oncology. Combination drug treatments may allow us to identify synergistic drug effects, reduce adverse drug reactions, and address variability in disease characteristics between patients. Identification of combination therapies remains challenging. We discuss current state-of-the-art systems pharmacology approaches to enable rational identification of combination therapies. These approaches, which include characterization of mechanisms of disease and drug action at a systems level, can enable understanding of drug interactions at the molecular, cellular, physiological, and organismal levels. Such multiscale understanding can enable precision medicine by promoting the rational development of combination therapy at the level of individual patients for many diseases.
引用
收藏
页码:21 / 40
页数:20
相关论文
共 136 条
[21]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[22]   Synergistic target combination prediction from curated signaling networks: Machine learning meets systems biology and pharmacology [J].
Chua, Huey Eng ;
Bhowmick, Sourav S. ;
Tucker-Kellogg, Lisa .
METHODS, 2017, 129 :60-80
[23]  
Coen van Hassselt J. G., 2017, Current Opinion in Systems Biology, V4, P9, DOI 10.1016/j.coisb.2017.05.006
[24]   Comprehensive molecular profiling of lung adenocarcinoma [J].
Collisson, Eric A. ;
Campbell, Joshua D. ;
Brooks, Angela N. ;
Berger, Alice H. ;
Lee, William ;
Chmielecki, Juliann ;
Beer, David G. ;
Cope, Leslie ;
Creighton, Chad J. ;
Danilova, Ludmila ;
Ding, Li ;
Getz, Gad ;
Hammerman, Peter S. ;
Hayes, D. Neil ;
Hernandez, Bryan ;
Herman, James G. ;
Heymach, John V. ;
Jurisica, Igor ;
Kucherlapati, Raju ;
Kwiatkowski, David ;
Ladanyi, Marc ;
Robertson, Gordon ;
Schultz, Nikolaus ;
Shen, Ronglai ;
Sinha, Rileen ;
Sougnez, Carrie ;
Tsao, Ming-Sound ;
Travis, William D. ;
Weinstein, John N. ;
Wigle, Dennis A. ;
Wilkerson, Matthew D. ;
Chu, Andy ;
Cherniack, Andrew D. ;
Hadjipanayis, Angela ;
Rosenberg, Mara ;
Weisenberger, Daniel J. ;
Laird, Peter W. ;
Radenbaugh, Amie ;
Ma, Singer ;
Stuart, Joshua M. ;
Byers, Lauren Averett ;
Baylin, Stephen B. ;
Govindan, Ramaswamy ;
Meyerson, Matthew ;
Rosenberg, Mara ;
Gabriel, Stacey B. ;
Cibulskis, Kristian ;
Sougnez, Carrie ;
Kim, Jaegil ;
Stewart, Chip .
NATURE, 2014, 511 (7511) :543-550
[25]   Mechanism-based pharmacokinetic-pharmacodynamic modeling: Biophase distribution, receptor theory, and dynamical systems analysis [J].
Danhof, Meindert ;
de Jongh, Joost ;
De lange, Elizabeth C. M. ;
Della Pasqua, Oscar ;
Ploeger, Bart A. ;
Voskuyl, Rob A. .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2007, 47 :357-400
[26]   Systems pharmacology - Towards the modeling of network interactions [J].
Danhof, Meindert .
EUROPEAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2016, 94 :4-14
[27]  
DEVITA VT, 1975, CANCER, V35, P98, DOI 10.1002/1097-0142(197501)35:1<98::AID-CNCR2820350115>3.0.CO
[28]  
2-B
[29]   Effective Combination Therapies for B-cell Lymphoma Predicted by a Virtual Disease Model [J].
Du, Wei ;
Goldstein, Rebecca ;
Jiang, Yanwen ;
Aly, Omar ;
Cerchietti, Leandro ;
Melnick, Ari ;
Elemento, Olivier .
CANCER RESEARCH, 2017, 77 (08) :1818-1830
[30]   In vitro generation of human pluripotent stem cell derived lung organoids [J].
Dye, Briana R. ;
Hill, David R. ;
Ferguson, Michael A. H. ;
Tsai, Yu-Hwai ;
Nagy, Melinda S. ;
Dyal, Rachel ;
Wells, James M. ;
Mayhew, Christopher N. ;
Nattiv, Roy ;
Klein, Ophir D. ;
White, Eric S. ;
Deutsch, Gail H. ;
Spence, Jason R. .
ELIFE, 2015, 4 :1-25