Systems Pharmacology: Defining the Interactions of Drug Combinations

被引:57
作者
van Hasselt, J. G. Coen [1 ,2 ]
Iyengar, Ravi [1 ]
机构
[1] Icahn Sch Med Mt Sinai, Mt Sinai Inst Syst Biomed, Dept Pharmacol Sci, Syst Biol Ctr, New York, NY 10029 USA
[2] Leiden Univ, Leiden Acad Ctr Drug Res, Div Syst Biomed & Pharmacol, NL-2333 Leiden, Netherlands
来源
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 59 | 2019年 / 59卷
基金
美国国家卫生研究院;
关键词
systems pharmacology; combination therapy; pharmacodynamics; systems biology; modeling; QSP; quantitative systems pharmacology; MICROPHYSIOLOGICAL SYSTEMS; ANTICANCER DRUGS; CANCER-THERAPY; IPS CELLS; NETWORK; DISCOVERY; DISEASE; BIOLOGY; DESIGN; MODEL;
D O I
10.1146/annurev-pharmtox-010818-021511
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The majority of diseases are associated with alterations in multiple molecular pathways and complex interactions at the cellular and organ levels. Single-target monotherapies therefore have intrinsic limitations with respect to their maximum therapeutic benefits. The potential of combination drug therapies has received interest for the treatment of many diseases and is well established in some areas, such as oncology. Combination drug treatments may allow us to identify synergistic drug effects, reduce adverse drug reactions, and address variability in disease characteristics between patients. Identification of combination therapies remains challenging. We discuss current state-of-the-art systems pharmacology approaches to enable rational identification of combination therapies. These approaches, which include characterization of mechanisms of disease and drug action at a systems level, can enable understanding of drug interactions at the molecular, cellular, physiological, and organismal levels. Such multiscale understanding can enable precision medicine by promoting the rational development of combination therapy at the level of individual patients for many diseases.
引用
收藏
页码:21 / 40
页数:20
相关论文
共 136 条
[1]   Human-on-a-chip design strategies and principles for physiologically based pharmacokinetics/pharmacodynamics modeling [J].
Abaci, Hasan Erbil ;
Shuler, Michael L. .
INTEGRATIVE BIOLOGY, 2015, 7 (04) :383-391
[2]   Combinatorial drug therapy for cancer in the post-genomic era [J].
Al-Lazikani, Bissan ;
Banerji, Udai ;
Workman, Paul .
NATURE BIOTECHNOLOGY, 2012, 30 (07) :679-691
[3]  
[Anonymous], BIORXIV
[4]   A community computational challenge to predict the activity of pairs of compounds [J].
Bansal, Mukesh ;
Yang, Jichen ;
Karan, Charles ;
Menden, Michael P. ;
Costello, James C. ;
Tang, Hao ;
Xiao, Guanghua ;
Li, Yajuan ;
Allen, Jeffrey ;
Zhong, Rui ;
Chen, Beibei ;
Kim, Minsoo ;
Wang, Tao ;
Heiser, Laura M. ;
Realubit, Ronald ;
Mattioli, Michela ;
Alvarez, Mariano J. ;
Shen, Yao ;
Gallahan, Daniel ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Xie, Yang ;
Stolovitzky, Gustavo ;
Califano, Andrea ;
Abbuehl, Jean-Paul ;
Altman, Russ B. ;
Balcome, Shawn ;
Bell, Ana ;
Bender, Andreas ;
Berger, Bonnie ;
Bernard, Jonathan ;
Bieberich, Andrew A. ;
Borboudakis, Giorgos ;
Chan, Christina ;
Chen, Ting-Huei ;
Choi, Jaejoon ;
Coelho, Luis Pedro ;
Creighton, Chad J. ;
Dampier, Will ;
Davisson, V. Jo ;
Deshpande, Raamesh ;
Diao, Lixia ;
Di Camillo, Barbara ;
Dundar, Murat ;
Ertel, Adam ;
Goswami, Chirayu P. ;
Gottlieb, Assaf ;
Gould, Michael N. ;
Goya, Jonathan ;
Grau, Michael .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1213-+
[5]   Integrating Transcriptomic Data with Mechanistic Systems Pharmacology Models for Virtual Drug Combination Trials [J].
Barrette, Anne Marie ;
Bouhaddou, Mehdi ;
Birtwistle, Marc R. .
ACS CHEMICAL NEUROSCIENCE, 2018, 9 (01) :118-129
[6]   Multidrug evolutionary strategies to reverse antibiotic resistance [J].
Baym, Michael ;
Stone, Laura K. ;
Kishony, Roy .
SCIENCE, 2016, 351 (6268)
[7]   Integrated genomic analyses of ovarian carcinoma [J].
Bell, D. ;
Berchuck, A. ;
Birrer, M. ;
Chien, J. ;
Cramer, D. W. ;
Dao, F. ;
Dhir, R. ;
DiSaia, P. ;
Gabra, H. ;
Glenn, P. ;
Godwin, A. K. ;
Gross, J. ;
Hartmann, L. ;
Huang, M. ;
Huntsman, D. G. ;
Iacocca, M. ;
Imielinski, M. ;
Kalloger, S. ;
Karlan, B. Y. ;
Levine, D. A. ;
Mills, G. B. ;
Morrison, C. ;
Mutch, D. ;
Olvera, N. ;
Orsulic, S. ;
Park, K. ;
Petrelli, N. ;
Rabeno, B. ;
Rader, J. S. ;
Sikic, B. I. ;
Smith-McCune, K. ;
Sood, A. K. ;
Bowtell, D. ;
Penny, R. ;
Testa, J. R. ;
Chang, K. ;
Dinh, H. H. ;
Drummond, J. A. ;
Fowler, G. ;
Gunaratne, P. ;
Hawes, A. C. ;
Kovar, C. L. ;
Lewis, L. R. ;
Morgan, M. B. ;
Newsham, I. F. ;
Santibanez, J. ;
Reid, J. G. ;
Trevino, L. R. ;
Wu, Y. -Q. ;
Wang, M. .
NATURE, 2011, 474 (7353) :609-615
[8]   Patient-derived xenografts undergo mouse-specific tumor evolution [J].
Ben-David, Uri ;
Ha, Gavin ;
Tseng, Yuen-Yi ;
Greenwald, Noah F. ;
Oh, Coyin ;
Shih, Juliann ;
McFarland, James M. ;
Wong, Bang ;
Boehm, Jesse S. ;
Beroukhim, Rameen ;
Golub, Todd R. .
NATURE GENETICS, 2017, 49 (11) :1567-+
[9]   Is systems pharmacology ready to impact upon therapy development? A study on the cholesterol biosynthesis pathway [J].
Benson, Helen E. ;
Watterson, Steven ;
Sharman, Joanna L. ;
Mpamhanga, Chido P. ;
Parton, Andrew ;
Southan, Christopher ;
Harmar, Anthony J. ;
Ghazal, Peter .
BRITISH JOURNAL OF PHARMACOLOGY, 2017, 174 (23) :4362-4382
[10]   The ChEMBL bioactivity database: an update [J].
Bento, A. Patricia ;
Gaulton, Anna ;
Hersey, Anne ;
Bellis, Louisa J. ;
Chambers, Jon ;
Davies, Mark ;
Krueger, Felix A. ;
Light, Yvonne ;
Mak, Lora ;
McGlinchey, Shaun ;
Nowotka, Michal ;
Papadatos, George ;
Santos, Rita ;
Overington, John P. .
NUCLEIC ACIDS RESEARCH, 2014, 42 (D1) :D1083-D1090