Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity

被引:38
作者
Ma, Wei [1 ]
机构
[1] Michigan State Univ, Dept Energy, Plant Res Lab, E Lansing, MI 48824 USA
关键词
Arabidopsis; Calcium; Cyclic nucleotide gated channel; Nitric oxide; Plant innate immunity; Signal transduction; NITRIC-OXIDE SYNTHASE; EARLY SIGNALING EVENTS; PROGRAMMED CELL-DEATH; REACTIVE OXYGEN; ION CHANNELS; HYPERSENSITIVE RESPONSE; CALMODULIN ISOFORMS; PHYSIOLOGICAL ROLES; OXIDATIVE BURST; PLASMA-MEMBRANE;
D O I
10.1016/j.plantsci.2011.06.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The increase of cytosolic Ca2+ is a vital event in plant pathogen signaling cascades. Molecular components linking pathogen signal perception to cytosolic Ca2+ increase have not been well characterized. Plant cyclic nucleotide gated channels (CNGCs) play important roles in the pathogen signaling cascade, in terms of facilitating Ca2+ uptake into the cytosol in response to pathogen and pathogen associated molecular pattern (PAMP) signals. Perception of pathogens leads to cyclic nucleotide production and the activation of CNGCs. The Ca2+ signal is transduced through Ca2+ sensors (Calmodulin (CaM) and CaM-like proteins (CMLs)), which regulates the production of nitric oxide (NO). In addition, roles of Ca2+/CaM interacting proteins such as CaM binding Protein (CBP) and CaM-binding transcription activators (CAMTAs)) have been recently identified in the plant defense signaling cascade as well. Furthermore, Ca2+-dependent protein kinases (CDPKs) have been found to function as components in terms of transcriptional activation in response to a pathogen (PAMP) signal. Although evidence shows that Ca2+ is an essential signaling component upstream from many vital signaling molecules (such as NO), some work also indicates that these downstream signaling components can also regulate Ca2+ homeostasis. NO can induce cytosolic Ca2+ increase (through activation of plasma membrane- and intracellular membrane-localized Ca2+ channels) during pathogen signaling cascades. Thus, much work is needed to further elucidate the complexity of the plant pathogen signaling network in the future. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:342 / 346
页数:5
相关论文
共 86 条
[1]   Nitric oxide synthases: structure, function and inhibition [J].
Alderton, WK ;
Cooper, CE ;
Knowles, RG .
BIOCHEMICAL JOURNAL, 2001, 357 (03) :593-615
[2]   Expression of plant cyclic nucleotide-gated cation channels in yeast [J].
Ali, R ;
Zielinski, RE ;
Berkowitz, GA .
JOURNAL OF EXPERIMENTAL BOTANY, 2006, 57 (01) :125-138
[3]   Death don't have no mercy and neither does calcium:: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity [J].
Ali, Rashid ;
Ma, Wei ;
Lemtiri-Chlieh, Fouad ;
Tsaltas, Dimitrios ;
Leng, Qiang ;
von Bodman, Susannne ;
Berkowitz, Gerald A. .
PLANT CELL, 2007, 19 (03) :1081-1095
[4]   HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family [J].
Balagué, C ;
Lin, BQ ;
Alcon, C ;
Flottes, G ;
Malmström, S ;
Köhler, C ;
Neuhaus, G ;
Pelletier, G ;
Gaymard, F ;
Roby, D .
PLANT CELL, 2003, 15 (02) :365-379
[5]   Elicitors, effectors, and R genes:: The new paradigm and a lifetime supply of questions [J].
Bent, Andrew F. ;
Mackey, David .
ANNUAL REVIEW OF PHYTOPATHOLOGY, 2007, 45 :399-436
[6]   New insights into nitric oxide signaling in plants [J].
Besson-Bard, Angelique ;
Pugin, Alain ;
Wendehenne, David .
ANNUAL REVIEW OF PLANT BIOLOGY, 2008, 59 :21-39
[7]   Early signalling events in the apoplastic oxidative burst in suspension cultured French bean cells involve cAMP and Ca2+ [J].
Bindschedler, LV ;
Minibayeva, F ;
Gardner, SL ;
Gerrish, C ;
Davies, DR ;
Bolwell, GP .
NEW PHYTOLOGIST, 2001, 151 (01) :185-194
[8]  
BOLWELL GP, 1992, PHYTOCHEMISTRY, V31, P4081, DOI 10.1016/0031-9422(92)80418-E
[9]   A molecular basis for NO selectivity in soluble guanylate cyclase [J].
Boon, EM ;
Huang, SH ;
Marletta, MA .
NATURE CHEMICAL BIOLOGY, 2005, 1 (01) :53-59
[10]   Plant-specific calmodulin-binding proteins [J].
Bouché, N ;
Yellin, A ;
Snedden, WA ;
Fromm, H .
ANNUAL REVIEW OF PLANT BIOLOGY, 2005, 56 :435-466