FPGA Implementation of an Algorithm for Automatically Detecting Targets in Remotely Sensed Hyperspectral Images

被引:32
作者
Gonzalez, Carlos [1 ]
Bernabe, Sergio [1 ]
Mozos, Daniel [1 ]
Plaza, Antonio [2 ]
机构
[1] Univ Complutense Madrid, Dept Comp Architecture & Automat, Fac Comp Sci, E-28040 Madrid, Spain
[2] Univ Extremadura, Dept Comp Technol & Commun, Polytech Sch Caceres, E-10071 Caceres, Spain
关键词
Automatic target-generation process (ATGP); field-programmable gate arrays (FPGAs); hyperspectral imaging; reconfigurable hardware; ANOMALY DETECTION; SPECIAL-ISSUE; ARCHITECTURES;
D O I
10.1109/JSTARS.2015.2504427
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Timely detection of targets continues to be a relevant challenge for hyperspectral remote sensing capability. The automatic target-generation process using an orthogonal projection operator (ATGP-OSP) has been widely used for this purpose. Hyperspectral target-detection applications require timely responses for swift decisions, which depend upon (near) real-time performance of algorithm analysis. Reconfigurable field-programmable gate arrays (FPGAs) are promising platforms that allow hardware/software codesign and the potential to provide powerful onboard computing capabilities and flexibility at the same time. In this paper, we present an FPGA implementation for the ATGP-OSP algorithm. Our system includes a direct memory access module and implements a prefetching technique to hide the latency of the input/output communications. The proposed method has been implemented on a Virtex-7 XC7VX690T FPGA and tested using real hyperspectral data collected by NASA's Airborne Visible Infra-Red Imaging Spectrometer (AVIRIS) over the Cuprite mining district in Nevada and the World Trade Center in New York. Experimental results demonstrate that our hardware version of the ATGP-OSP algorithm can significantly outperform a software version, which makes our reconfigurable system appealing for onboard hyperspectral data processing.
引用
收藏
页码:4334 / 4343
页数:10
相关论文
共 30 条
[1]  
[Anonymous], REMOTE SENS ENV
[2]   A Hardware Implementation of a Run-Time Scheduler for Reconfigurable Systems [J].
Antonio Clemente, Juan ;
Resano, Javier ;
Gonzalez, Carlos ;
Mozos, Daniel .
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2011, 19 (07) :1263-1276
[3]   Hyperspectral Unmixing on GPUs and Multi-Core Processors: A Comparison [J].
Bernabe, Sergio ;
Sanchez, Sergio ;
Plaza, Antonio ;
Lopez, Sebastian ;
Benediktsson, Jon Atli ;
Sarmiento, Roberto .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (03) :1386-1398
[4]   FPGA Design of an Automatic Target Generation Process for Hyperspectral Image Analysis [J].
Bernabe, Sergio ;
Lopez, Sebastian ;
Plaza, Antonio ;
Sarmiento, Roberto ;
Garcia Rodriguez, Pablo .
2011 IEEE 17TH INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2011, :1010-1015
[5]  
Chang C.-I, 2003, Hyperspectral Imaging: Techniques for Spectral Detection and Classification
[6]   Estimation of number of spectrally distinct signal sources in hyperspectral imagery [J].
Chang, CI ;
Du, Q .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (03) :608-619
[7]   Real-time processing algorithms for target detection and classification in hyperspectral imagery [J].
Chang, CI ;
Ren, H ;
Chiang, SS .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (04) :760-768
[8]   Fast real-time onboard processing of hyperspectral imagery for detection and classification [J].
Du, Qian ;
Nekovei, Reza .
JOURNAL OF REAL-TIME IMAGE PROCESSING, 2009, 4 (03) :273-286
[9]  
Ghringer D., 2010, P 5 INT WORKSH REC C, P13
[10]   IMAGING SPECTROMETRY FOR EARTH REMOTE-SENSING [J].
GOETZ, AFH ;
VANE, G ;
SOLOMON, JE ;
ROCK, BN .
SCIENCE, 1985, 228 (4704) :1147-1153