Characterizing Atmospheric Transport Pathways to Antarctica and the Remote Southern Ocean Using Radon-222

被引:40
作者
Chambers, Scott D. [1 ]
Preunkert, Susanne [2 ]
Weller, Rolf [3 ]
Hong, Sang-Bum [4 ]
Humphries, Ruhi S. [5 ,6 ]
Tositti, Laura [7 ]
Angot, Helene [8 ]
Legrand, Michel [2 ]
Williams, Alastair G. [1 ]
Griffiths, Alan D. [1 ]
Crawford, Jagoda [1 ]
Simmons, Jack [6 ]
Choi, Taejin J. [4 ]
Krummel, Paul B. [5 ]
Molloy, Suzie [5 ]
Loh, Zoe [5 ]
Galbally, Ian [5 ]
Wilson, Stephen [6 ]
Magand, Olivier [2 ]
Sprovieri, Francesca [9 ]
Pirrone, Nicola [9 ]
Dommergue, Aurelien [2 ]
机构
[1] ANSTO, Environm Res, Sydney, NSW, Australia
[2] Univ Grenoble Alpes, CNRS, IRD, IGE, Grenoble, France
[3] Alfred Wegener Inst Polar & Marine Res, Bremerhaven, Germany
[4] Korea Polar Res Inst, Incheon, South Korea
[5] CSIRO Oceans & Atmosphere, Climate Sci Ctr, Aspendale, Vic, Australia
[6] Univ Wollongong, Ctr Atmospher Chem, Wollongong, NSW, Australia
[7] Univ Bologna, Environm Chem & Radioact Lab, Bologna, Italy
[8] MIT, Inst Data Syst & Soc, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[9] CNR Inst Atmospher Pollut Res, Monterotondo, Italy
基金
美国国家科学基金会;
关键词
radon; Southern Ocean; Antarctica; atmospheric transport; MBL; troposphere; ozone; mercury; BASE-LINE CHARACTERIZATION; SIZE-SEGREGATED AEROSOL; MCMURDO DRY VALLEYS; SEA-ICE; TROPOSPHERIC CHEMISTRY; MERCURY MEASUREMENTS; RADON MEASUREMENTS; TRACER TRANSPORT; DUMONT DURVILLE; CONCORDIA SITE;
D O I
10.3389/feart.2018.00190
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We discuss remote terrestrial influences on boundary layer air over the Southern Ocean and Antarctica, and the mechanisms by which they arise, using atmospheric radon observations as a proxy. Our primary motivation was to enhance the scientific community's ability to understand and quantify the potential effects of pollution, nutrient or pollen transport from distant land masses to these remote, sparsely instrumented regions. Seasonal radon characteristics are discussed at 6 stations (Macquarie Island, King Sejong, Neumayer, Dumont d'Urville, Jang Bogo and Dome Concordia) using 1-4 years of continuous observations. Context is provided for differences observed between these sites by Southern Ocean radon transects between 45 and 67 degrees S made by the Research Vessel Investigator. Synoptic transport of continental air within the marine boundary layer (MBL) dominated radon seasonal cycles in the mid-Southern Ocean site (Macquarie Island). MBL synoptic transport, tropospheric injection, and Antarctic outflow all contributed to the seasonal cycle at the sub-Antarctic site (King Sejong). Tropospheric subsidence and injection events delivered terrestrially influenced air to the Southern Ocean MBL in the vicinity of the circumpolar trough (or "Polar Front"). Katabatic outflow events from Antarctica were observed to modify trace gas and aerosol characteristics of the MBL 100-200 km off the coast. Radon seasonal cycles at coastal Antarctic sites were dominated by a combination of local radon sources in summer and subsidence of terrestrially influenced tropospheric air, whereas those on the Antarctic Plateau were primarily controlled by tropospheric subsidence. Separate characterization of long-term marine and katabatic flow air masses at Dumont d'Urville revealed monthly mean differences in summer of up to 5 ppbv in ozone and 0.3 ng m(-3) in gaseous elemental mercury. These differences were largely attributed to chemical processes on the Antarctic Plateau. A comparison of our observations with some Antarctic radon simulations by global climate models over the past two decades indicated that: (i) some models overestimate synoptic transport to Antarctica in the MBL, (ii) the seasonality of the Antarctic ice sheet needs to be better represented in models, (iii) coastal Antarctic radon sources need to be taken into account, and (iv) the underestimation of radon in subsiding tropospheric air needs to be investigated.
引用
收藏
页数:28
相关论文
共 111 条
[1]   Comparing modeled and observed changes in mineral dust transport and deposition to Antarctica between the Last Glacial Maximum and current climates [J].
Samuel Albani ;
Natalie M. Mahowald ;
Barbara Delmonte ;
Valter Maggi ;
Gisela Winckler .
Climate Dynamics, 2012, 38 (9-10) :1731-1755
[2]  
Amante C., 2009, NOAA TECHNICAL MEMOR, P19, DOI 10.7289/V5C8276M
[3]   A 2-year record of atmospheric mercury species at a background Southern Hemisphere station on Amsterdam Island [J].
Angot, H. ;
Barret, M. ;
Magand, O. ;
Ramonet, M. ;
Dommergue, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2014, 14 (20) :11461-11473
[4]   Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models [J].
Angot, Helene ;
Dastoor, Ashu ;
De Simone, Francesco ;
Gardfeldt, Katarina ;
Gencarelli, Christian N. ;
Hedgecock, Ian M. ;
Langer, Sarka ;
Magand, Olivier ;
Mastromonaco, Michelle N. ;
Nordstrom, Claus ;
Pfaffhuber, Katrine A. ;
Pirrone, Nicola ;
Ryjkov, Andrei ;
Selin, Noelle E. ;
Skov, Henrik ;
Song, Shaojie ;
Sprovieri, Francesca ;
Steffen, Alexandra ;
Toyota, Kenjiro ;
Travnikov, Oleg ;
Yang, Xin ;
Dommergue, Aurelien .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (16) :10735-10763
[5]   New insights into the atmospheric mercury cycling in central Antarctica and implications on a continental scale [J].
Angot, Helene ;
Magand, Olivier ;
Helmig, Detlev ;
Ricaud, Philippe ;
Quennehen, Boris ;
Gallee, Hubert ;
Del Guasta, Massimo ;
Sprovieri, Francesca ;
Pirrone, Nicola ;
Savarino, Joel ;
Dommergue, Aurelien .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (13) :8249-8264
[6]   Multi-year record of atmospheric mercury at Dumont d'Urville, East Antarctic coast: continental outflow and oceanic influences [J].
Angot, Helene ;
Dion, Iris ;
Vogel, Nicolas ;
Legrand, Michel ;
Magand, Olivier ;
Dommergue, Aurelien .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (13) :8265-8279
[7]  
Balkanski Y.J., 1990, Tellus B, V42, P62, DOI DOI 10.3402/TELLUSB.V42I1.15192
[8]   Atmospheric chemistry of mercury in Antarctica and the role of cryptogams to assess deposition patterns in coastal ice-free areas [J].
Bargagli, R. .
CHEMOSPHERE, 2016, 163 :202-208
[9]   Off-line algorithm for calculation of vertical tracer transport in the troposphere due to deep convection [J].
Belikov, D. A. ;
Maksyutov, S. ;
Krol, M. ;
Fraser, A. ;
Rigby, M. ;
Bian, H. ;
Agusti-Panareda, A. ;
Bergmann, D. ;
Bousquet, P. ;
Cameron-Smith, P. ;
Chipperfield, M. P. ;
Fortems-Cheiney, A. ;
Gloor, E. ;
Haynes, K. ;
Hess, P. ;
Houweling, S. ;
Kawa, S. R. ;
Law, R. M. ;
Loh, Z. ;
Meng, L. ;
Palmer, P. I. ;
Patra, P. K. ;
Prinn, R. G. ;
Saito, R. ;
Wilson, C. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (03) :1093-1114
[10]  
Brechtel FJ, 1998, J GEOPHYS RES-ATMOS, V103, P16351, DOI 10.1029/97JD03014