Exploring the Plasma Chemistry in Microwave Chemical Vapor Deposition of Diamond from C/H/O Gas Mixtures

被引:14
作者
Kelly, Mark W. [1 ]
Richley, James C. [1 ]
Western, Colin M. [1 ]
Ashfold, Michael N. R. [1 ]
Mankelevich, Yuri A. [2 ]
机构
[1] Univ Bristol, Sch Chem, Bristol BS8 1TS, Avon, England
[2] Moscow MV Lomonosov State Univ, Skobeltsyn Inst Nucl Phys, Moscow 119991, Russia
基金
英国工程与自然科学研究理事会;
关键词
MODELING INVESTIGATIONS; PREMIXED ACETYLENE; PHASE CHEMISTRY; GROWTH; SPECTROSCOPY; SIMULATION; ETHYLENE; HYDROGEN; OXYGEN; FILMS;
D O I
10.1021/jp306190n
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microwave (MW)-activated CH4/CO2/H-2 gas mixtures operating under conditions relevant to diamond chemical vapor deposition (i.e., X-C/Sigma = X-elem(C)/(X-elem(C) + X-elem(O)) approximate to 0.5, H-2 mole fraction = 0.3, pressure, p = 150 Torr, and input power, P = 1 kW) have been explored in detail by a combination of spatially resolved absorption measurements (of CH, C-2(a), and OH radicals and H(n = 2) atoms) within the hot plasma region and companion 2-dimensional modeling of the plasma. CO and H-2 are identified as the dominant species in the plasma core. The lower thermal conductivity of such a mixture (cf. the H-2-rich plasmas used in most diamond chemical vapor deposition) accounts for the finding that CH4/CO2/H-2 plasmas can yield similar maximal gas temperatures and diamond growth rates at lower input powers than traditional CH4/H-2 plasmas. The plasma chemistry and composition is seen to switch upon changing from oxygen-rich (X-C/Sigma < 0.5) to carbon-rich (X-C/Sigma > 0.5) source gas mixtures and, by comparing CH4/CO2/H-2 (X-C/Sigma = 0.5) and CO/H-2 plasmas, to be sensitive to the choice of source gas (by virtue of the different prevailing gas activation mechanisms), in contrast to C/H process gas mixtures. CH3 radicals are identified as the most abundant C1Hx [x = 0-3] species near the growing diamond surface within the process window for successful diamond growth (X-C/Sigma approximate to 0.5-0.54) identified by Bachmann et al. (Diamond Relat. Mater. 1991, 1, 1). This, and the findings of similar maximal gas temperatures (T-gas similar to 2800-3000 K) and H atom mole fractions (X(H)similar to 5-10%) to those found in MW-activated C/H plasmas, points to the prevalence of similar CH3 radical based diamond growth mechanisms in both C/H and C/H/O plasmas.
引用
收藏
页码:9431 / 9446
页数:16
相关论文
共 47 条
[31]   The role of C2 in nanocrystalline diamond growth [J].
Rabeau, JR ;
John, P ;
Wilson, JIB ;
Fan, Y .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (11) :6724-6732
[32]   Spatial profiling of H(n=2) atom number densities in a dc arc jet reactor [J].
Rennick, C. J. ;
Ma, J. ;
Ashfold, M. N. R. ;
Orr-Ewing, A. J. ;
Mankelevich, Yu A. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2006, 15 (03) :432-440
[33]   Measurement and modeling of a diamond deposition reactor:: Hydrogen atom and electron number densities in an Ar/H2 arc jet discharge -: art. no. 113306 [J].
Rennick, CJ ;
Engeln, R ;
Smith, JA ;
Orr-Ewing, AJ ;
Ashfold, MNR ;
Mankelevich, YA .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (11)
[34]   Cavity ring-down spectroscopy measurements of the concentrations of C2(X1Σ+g) radicals in a DC arc jet reactor used for chemical vapour deposition of diamond films [J].
Rennick, CJ ;
Smith, JA ;
Ashfold, MNR ;
Orr-Ewing, AJ .
CHEMICAL PHYSICS LETTERS, 2004, 383 (5-6) :518-522
[35]   Optical Emission from Microwave Activated C/H/O Gas Mixtures for Diamond Chemical Vapor Deposition [J].
Richley, James C. ;
Kelly, Mark W. ;
Ashfold, Michael N. R. ;
Mankelevich, Yuri A. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2012, 116 (38) :9447-9458
[36]   Combined experimental and modeling studies of microwave activated CH4/H2/Ar plasmas for microcrystalline, nanocrystalline, and ultrananocrystalline diamond deposition [J].
Richley, James C. ;
Fox, Oliver J. L. ;
Ashfold, Michael N. R. ;
Mankelevich, Yuri A. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (06)
[37]   Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames [J].
Richter, H ;
Howard, JB .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (11) :2038-2055
[38]   The HITRAN 2008 molecular spectroscopic database [J].
Rothman, L. S. ;
Gordon, I. E. ;
Barbe, A. ;
Benner, D. Chris ;
Bernath, P. E. ;
Birk, M. ;
Boudon, V. ;
Brown, L. R. ;
Campargue, A. ;
Champion, J. -P. ;
Chance, K. ;
Coudert, L. H. ;
Dana, V. ;
Devi, V. M. ;
Fally, S. ;
Flaud, J. -M. ;
Gamache, R. R. ;
Goldman, A. ;
Jacquemart, D. ;
Kleiner, I. ;
Lacome, N. ;
Lafferty, W. J. ;
Mandin, J. -Y. ;
Massie, S. T. ;
Mikhailenko, S. N. ;
Miller, C. E. ;
Moazzen-Ahmadi, N. ;
Naumenko, O. V. ;
Nikitin, A. V. ;
Orphal, J. ;
Perevalov, V. I. ;
Perrin, A. ;
Predoi-Cross, A. ;
Rinsland, C. P. ;
Rotger, M. ;
Simeckova, M. ;
Smith, M. A. H. ;
Sung, K. ;
Tashkun, S. A. ;
Tennyson, J. ;
Toth, R. A. ;
Vandaele, A. C. ;
Vander Auwera, J. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (9-10) :533-572
[39]   Low temperature limits of diamond film growth by microwave plasma-assisted CVD [J].
Stiegler, J ;
Lang, T ;
NygardFerguson, M ;
vonKaenel, Y ;
Blank, E .
DIAMOND AND RELATED MATERIALS, 1996, 5 (3-5) :226-230
[40]   Molecular beam mass spectrometry and modelling of CH4-CO2 plasmas in relation with polycrystalline and nanocrystalline diamond deposition [J].
Vandenbulcke, L. ;
Gries, T. ;
de Persis, S. ;
Met, C. ;
Aubry, O. ;
Delfau, J. L. .
DIAMOND AND RELATED MATERIALS, 2010, 19 (7-9) :1103-1116