Space-time inhomogeneous background intensity estimators for semi-parametric space-time self-exciting point process models

被引:1
作者
Li, Chenlong [1 ,2 ]
Song, Zhanjie [1 ,3 ]
Wang, Wenjun [4 ]
机构
[1] Tianjin Univ, Sch Math, Tianjin 300072, Peoples R China
[2] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[3] Tianjin Univ, Visual Pattern Anal Res Lab, Tianjin 300072, Peoples R China
[4] Tianjin Univ, Sch Comp Sci & Technol, Tianjin 300072, Peoples R China
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Space-time point process models; Kernel density estimation; Expectation-maximization algorithm; Maximum likelihood; RESIDUAL ANALYSIS; EARTHQUAKES; OCCURRENCES;
D O I
10.1007/s10463-019-00715-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Histogram maximum likelihood estimators of semi-parametric space-time self-exciting point process models via expectation-maximization algorithm can be biased when the background process is inhomogeneous. We explore an alternative estimation method based on the variable bandwidth kernel density estimation (KDE) and EM algorithm. The proposed estimation method involves expanding the semi-parametric models by incorporating an inhomogeneous background process in space and time and applying the variable bandwidth KDE to estimate the background intensity function. Using an example, we show how the variable bandwidth KDE can be estimated this way. Two simulation examples based on residual analysis are designed to evaluate and validate the ability of our methods to recover the background intensity function and parametric triggering intensity function.
引用
收藏
页码:945 / 967
页数:23
相关论文
共 32 条
[1]   Alternated estimation in semi-parametric space-time branching-type point processes with application to seismic catalogs [J].
Adelfio, Giada ;
Chiodi, Marcello .
STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2015, 29 (02) :443-450
[2]  
[Anonymous], ARXIV180108273
[3]  
[Anonymous], 2009, Ph.D. diss
[4]  
[Anonymous], 2015, ARXIV150100725
[5]  
[Anonymous], SPR S STAT
[6]   Non-parametric kernel estimation for symmetric Hawkes processes. Application to high frequency financial data [J].
Bacry, E. ;
Dayri, K. ;
Muzy, J. F. .
EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (05)
[7]   VORONOI RESIDUAL ANALYSIS OF SPATIAL POINT PROCESS MODELS WITH APPLICATIONS TO CALIFORNIA EARTHQUAKE FORECASTS [J].
Bray, Andrew ;
Wong, Ka ;
Barr, Christopher D. ;
Schoenberg, Frederic Paik .
ANNALS OF APPLIED STATISTICS, 2014, 8 (04) :2247-2267
[8]   Assessment of Point Process Models for Earthquake Forecasting [J].
Bray, Andrew ;
Schoenberg, Frederic Paik .
STATISTICAL SCIENCE, 2013, 28 (04) :510-520
[9]  
Brix A., 2011, J ROYAL STAT SOC B, V63, P823
[10]   Evaluation of space-time point process models using super-thinning [J].
Clements, Robert Alan ;
Schoenberg, Frederic Paik ;
Veen, Alejandro .
ENVIRONMETRICS, 2012, 23 (07) :606-616