Measure zero stability problem of a generalized quadratic functional equation

被引:0
|
作者
EL-Fassi, Iz-iddine [1 ]
Kabbaj, Samir [2 ]
Chahbi, Abdellatif [3 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci & Tech, Dept Math, BP 2202, Fes, Morocco
[2] Ibn Tofail Univ, Fac Sci, Dept Math, BP 133, Kenitra, Morocco
[3] Ibn Zohr Univ, Fac Sci, Dept Math, Agadir, Morocco
来源
SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES | 2020年 / 14卷 / 01期
关键词
Generalized quadratic functional equation; Hyers-Ulam stability; First category Lebesgue measure; Baire category theorem; ULAM STABILITY; MAPPINGS; SET;
D O I
10.1007/s40863-019-00157-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a normed space, Y be a Banach space and f, g : X -> Y. In this paper, we investigate the Hyers-Ulam stability theorem for the generalized quadratic functional equation f(kx + y) + f(kx - y) = 2k(2)g(x) + 2 f (y) in a set Omega subset of X x X, where k is a positive integer. By the Baire category theorem, we derive some consequences of our main result.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 50 条