Mixed-Linker Metal-Organic frameworks for carbon and hydrocarbons capture under moist conditions

被引:27
作者
Gu, Yi-Ming [1 ,2 ]
Yuan, You-You [3 ]
Qadir, Salman [1 ,2 ]
Yuan, Zhong-Shan [1 ]
Zhao, Sheng-Sheng [1 ]
Sun, Tian-Jun [1 ]
Liu, Xiao-Wei [4 ]
Wang, Shu-Dong [1 ]
机构
[1] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] King Abdullah Univ Sci & Technol KAUST, Core Lab, Thuwal 239556900, Saudi Arabia
[4] King Abdullah Univ Sci & Technol KAUST, Div Phys Sci & Engn, Adv Membranes & Porous Mat Ctr, Thuwal 239556900, Saudi Arabia
基金
中国国家自然科学基金;
关键词
Metal-organic frameworks (MOFs); Mixed linker; Adsorption; Carbon capture; Moisture; POROUS MATERIALS; CO2; CAPTURE; ADSORPTION; WATER; SEPARATION; GAS; CH4; FUNCTIONALITIES; CHEMISTRY; METHANE;
D O I
10.1016/j.cej.2021.134447
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The capture of carbon and hydrocarbons is significant to the utilization of valuable resources and the mitigation of global warming, but achieving high gas capacity and selectivity at the same time remains a challenge, especially in the presence of high humidity. In this regard, based on the building block of MOF-801, MOF-801-FA structures were synthesized with high quality and few defects through a mixed-ligand strategy, in which formate ligands were introduced into the framework apart from fumarate ligands. This brought about tremendous increases in gas adsorption capacity, e.g., ca. 2.5-fold and 1.1-fold enhancement occurred to the adsorption of CH4 and CO2 in MOF-801-Hf-FA than MOF-801-Hf at 298 K and 1 bar. Besides, prominent IAST selectivities were also witnessed in MOF-801-FA, higher than those in the pristine MOFs, for CH4/N-2 and CO2/N-2 mixtures under ambient conditions. We then confirmed the efficient performance of MOF-801-FA for real CH4/N-2 and CO2/N-2 mixtures using the breakthrough experiments and following cycling tests, even in a relative humidity of 90%. Thus, the mixed-linker strategy was demonstrated effective to tune the structures of MOFs, and boost their performance in gas adsorption and separation. The results also showed that, with high capacities for CH4 and CO2, superior selectivities over N-2, desirable water resistance and facile regeneration, MOF-801-M-FA (M = Zr or Hf) are promising candidates for capturing CH4 and CO2 from N-2 in industry.
引用
收藏
页数:9
相关论文
共 67 条
[1]   Separation of CO2 from flue gas:: A review [J].
Aaron, D ;
Tsouris, C .
SEPARATION SCIENCE AND TECHNOLOGY, 2005, 40 (1-3) :321-348
[2]   Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship [J].
Adil, Karim ;
Belmabkhout, Youssef ;
Pillai, Renjith S. ;
Cadiau, Amandine ;
Bhatt, Prashant M. ;
Assen, Ayalew H. ;
Maurin, Guillaume ;
Eddaoudi, Mohamed .
CHEMICAL SOCIETY REVIEWS, 2017, 46 (11) :3402-3430
[3]   A MODIFIED APPROACH FOR ESTIMATING PSEUDO-VAPOR PRESSURES IN THE APPLICATION OF THE DUBININ-ASTAKHOV EQUATION [J].
AMANKWAH, KAG ;
SCHWARZ, JA .
CARBON, 1995, 33 (09) :1313-1319
[4]   Zr-based metal-organic frameworks: design, synthesis, structure, and applications [J].
Bai, Yan ;
Dou, Yibo ;
Xie, Lin-Hua ;
Rutledge, William ;
Li, Jian-Rong ;
Zhou, Hong-Cai .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (08) :2327-2367
[5]   Adsorption of CO2 and CH4 on a magnesium-based metal organic framework [J].
Bao, Zongbi ;
Yu, Liang ;
Ren, Qilong ;
Lu, Xiuyang ;
Deng, Shuguang .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2011, 353 (02) :549-556
[6]   Water Stability and Adsorption in Metal-Organic Frameworks [J].
Burtch, Nicholas C. ;
Jasuja, Himanshu ;
Walton, Krista S. .
CHEMICAL REVIEWS, 2014, 114 (20) :10575-10612
[7]   Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration [J].
Cadiau, Amandine ;
Belmabkhout, Youssef ;
Adil, Karim ;
Bhatt, Prashant M. ;
Pillai, Renjith S. ;
Shkurenko, Aleksander ;
Martineau-Corcos, Charlotte ;
Maurin, Guillaume ;
Eddaoudi, Mohamed .
SCIENCE, 2017, 356 (6339) :731-735
[8]  
Cengel Y.A., 1998, THERMODYNAMICS ENG A, V3rd
[9]   Balancing volumetric and gravimetric uptake in highly porous materials for clean energy [J].
Chen, Zhijie ;
Li, Penghao ;
Anderson, Ryther ;
Wang, Xingjie ;
Zhang, Xuan ;
Robison, Lee ;
Redfern, Louis R. ;
Moribe, Shinya ;
Islamoglu, Timur ;
Gomez-Gualdron, Diego A. ;
Yildirim, Taner ;
Stoddart, J. Fraser ;
Farha, Omar K. .
SCIENCE, 2020, 368 (6488) :297-+
[10]   The path towards sustainable energy [J].
Chu, Steven ;
Cui, Yi ;
Liu, Nian .
NATURE MATERIALS, 2017, 16 (01) :16-22