Uncertainty and filtering of hidden Markov models in discrete time

被引:4
作者
Cohen, Samuel N. [1 ]
机构
[1] Univ Oxford, Math Inst, Woodstock Rd, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
Filtering; Optimal control; Robustness; Nonlinear expectation; ROBUST ESTIMATION; RISK; EQUATIONS;
D O I
10.1186/s41546-020-00046-x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of filtering an unseen Markov chain from noisy observations, in the presence of uncertainty regarding the parameters of the processes involved. Using the theory of nonlinear expectations, we describe the uncertainty in terms of a penalty function, which can be propagated forward in time in the place of the filter. We also investigate a simple control problem in this context.
引用
收藏
页数:34
相关论文
共 41 条
  • [21] Follmer H., 2002, STUDIES MATH, V27
  • [22] Putting order in risk measures
    Frittelli, M
    Gianin, ER
    [J]. JOURNAL OF BANKING & FINANCE, 2002, 26 (07) : 1473 - 1486
  • [23] GRAF S, 1980, J REINE ANGEW MATH, V320, P192
  • [24] Grimble M. J., 1990, T ACOUST SPEECH SIG, V38
  • [25] HANSEN L. P., 2011, Robustness, DOI DOI 10.1515/9781400829385
  • [26] Recursive robust estimation and control without commitment
    Hansen, Lars Peter
    Sargent, Thomas J.
    [J]. JOURNAL OF ECONOMIC THEORY, 2007, 136 (01) : 1 - 27
  • [27] Robust estimation and control under commitment
    Hansen, LP
    Sargent, TJ
    [J]. JOURNAL OF ECONOMIC THEORY, 2005, 124 (02) : 258 - 301
  • [28] Huber P., 2009, ROBUST STAT, DOI [DOI 10.1002/9780470434697.CH7, 10.1002/9780470434697, DOI 10.1002/9780470434697]
  • [29] RISK-SENSITIVE CONTROL AND DYNAMIC-GAMES FOR PARTIALLY OBSERVED DISCRETE-TIME NONLINEAR-SYSTEMS
    JAMES, MR
    BARAS, JS
    ELLIOTT, RJ
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (04) : 780 - 792
  • [30] Kalman R., 1973, ASME J BASIC ENG SER, V83, P95, DOI [10.1115/1.3658902, DOI 10.1115/1.3658902]