Rare earth element geochemistry of Late Devonian reefal carbonates, canning basin, Western Australia: Confirmation of a seawater REE proxy in ancient limestones

被引:636
作者
Nothdurft, LD
Webb, GE
Kamber, BS
机构
[1] Univ Queensland, Sch Nat Resource Sci, Brisbane, Qld 4001, Australia
[2] Univ Queensland, Dept Earth Sci, Brisbane, Qld 4072, Australia
[3] Univ Queensland, ACQUIRE, Brisbane, Qld 4072, Australia
关键词
D O I
10.1016/S0016-7037(03)00422-8
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Rare earth element and yttrium (REE+Y) concentrations were determined in 49 Late Devonian reefal carbonates from the Lennard Shelf, Canning Basin, Western Australia. Shale-normalized (SN) REE+Y patterns of the Late Devonian samples display features consistent with the geochemistry of well-oxygenated, shallow seawater. A variety of different ancient limestone components, including microbialites, some skeletal carbonates (stromatoporoids), and cements, record seawater-like REE+Y signatures. Contamination associated with phosphate, Fe-oxides and shale was tested quantitatively, and can be discounted as the source of the REE+Y patterns. Co-occurring carbonate components that presumably precipitated from the same seawater have different relative REE concentrations, but consistent REE+Y patterns. Clean Devonian early marine cements (n = 3) display REE+Y signatures most like that of modern open ocean seawater and the highest Y/Ho ratios (e.g., 59) and greatest light REE (LREE) depletion (average Nd-SN/Yb-SN = 0.413, SD = 0.076). However, synsedimentary cements have the lowest REE concentrations (e.g., 405 ppb). Non-contaminated Devonian microbialite samples containing a mixture of the calcimicrobe Renalcis and micritic thrombolite aggregates in early marine cement (n = 11) have the highest relative REE concentrations of tested carbonates (average total REE = 11.3 ppm). Stromatoporoid skeletons, unlike modern corals, algae and molluscs, also contain well-developed, seawater-like REE patterns. Samples from an estuarine fringing reef have very different REE+Y patterns with LREE enrichment (Nd-SN/Yb-SN > 1), possibly reflecting inclusion of estuarine colloidal material that contained preferentially scavenged LREE from a nearby riverine input source. Hence, Devonian limestones provide a proxy for marine REE geochemistry and allow the differentiation of co-occurring water masses on the ancient Lennard Shelf. Although appropriate partition coefficients for quantification of Devonian seawater REE concentrations from out data are unknown, hypothetical Devonian Canning Basin seawater REE patterns were obtained with coefficients derived from modern natural proxies and experimental values. Resulting Devonian seawater patterns are slightly enriched in LREE compared to most modem seawaters and suggest higher overall REE concentrations, but are very similar to seawaters from regions with high terrigenous inputs. Our results suggest that most limestones should record important aspects of the REE geochemistry of the waters in which they precipitated, provided they are relatively free of terrigenous contamination and major diagenetic alteration from fluids with high, non-seawater-like REE contents. Hence, we expect that many other ancient limestones will serve as seawater REE proxies, and thereby provide information on paleoceanography, paleogeography and geochemical evolution of the oceans. Copyright (C) 2004 Elsevier Ltd.
引用
收藏
页码:263 / 283
页数:21
相关论文
共 84 条
[1]   Rare earth elements in seawater: Particle association, shale-normalization, and Ce oxidation [J].
Alibo, DS ;
Nozaki, Y .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1999, 63 (3-4) :363-372
[2]  
BANNER JL, 1988, J SEDIMENT PETROL, V58, P415
[3]   Comparison of the partitioning behaviours of yttrium, rare earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater [J].
Bau, M ;
Koschinsky, A ;
Dulski, P ;
Hein, JR .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1996, 60 (10) :1709-1725
[4]   Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect [J].
Bau, M .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1996, 123 (03) :323-333
[5]   Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa [J].
Bau, M ;
Dulski, P .
PRECAMBRIAN RESEARCH, 1996, 79 (1-2) :37-55
[6]   THE GEOCHEMICAL BALANCE OF THE RARE-EARTH ELEMENTS AND NEODYMIUM ISOTOPES IN THE OCEANS [J].
BERTRAM, CJ ;
ELDERFIELD, H .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1993, 57 (09) :1957-1986
[7]  
BRACHERT TC, 1991, J SEDIMENT PETROL, V61, P354
[8]  
BURNE R V, 1987, Palaios, V2, P241, DOI 10.2307/3514674
[9]   The influence of phosphate coprecipitation on rare earth distributions in natural waters [J].
Byrne, RH ;
Liu, XW ;
Schijf, J .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1996, 60 (17) :3341-3346
[10]   Ca-carbonates precipitation and limestone genesis -: the microbiogeologist point of view [J].
Castanier, S ;
Le Métayer-Levrel, G ;
Perthuisot, JP .
SEDIMENTARY GEOLOGY, 1999, 126 (1-4) :9-23