The initial value problem for gravitational waves in conformal gravity

被引:0
作者
Seahra, Sanjeev S. [1 ]
机构
[1] Univ New Brunswick, Dept Math & Stat, Fredericton, NB E3B 5A3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
modified gravity; gravitational waves; conformal gravity; RELATIVITY;
D O I
10.1088/1361-6382/ab6be1
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In certain models of conformal gravity, the propagation of gravitational waves is governed by a fourth order scalar partial differential equation. We study the initial value problem for a generalization of this equation, and derive a Kirchhoff-like explicit solution in terms of the field and its first three time derivatives evaluated on an initial hypersurface, as well as second order spatial derivatives of the initial data. In the conformal gravity case, we establish that if the initial data is featureless on scales smaller than the length scale of conformal symmetry breaking, then we recover the ordinary behaviour of gravitational waves in general relativity. We also confirm that the effective weak field gravitational force exerted by a static spherical body in such models becomes constant on small scales; i.e. conformal gravity is effectively 2-dimensional at high energies.
引用
收藏
页数:14
相关论文
共 34 条
  • [1] Abbott BP, 2018, PHYS REV LETT, V121, DOI [10.1103/PhysRevLett.123.011102, 10.1103/PhysRevLett.121.129902]
  • [2] Binary Black Hole Mergers in the First Advanced LIGO Observing Run
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abernathy, M. R.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adams, T.
    Addesso, P.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, B.
    Allocca, A.
    Altin, P. A.
    Anderson, S. B.
    Anderson, W. G.
    Arai, K.
    Araya, M. C.
    Arceneaux, C. C.
    Areeda, J. S.
    Arnaud, N.
    Arun, K. G.
    Ascenzi, S.
    Ashton, G.
    Ast, M.
    Aston, S. M.
    Astone, P.
    Aufmuth, P.
    Aulbert, C.
    Babak, S.
    Bacon, P.
    Bader, M. K. M.
    Baker, P. T.
    Baldaccini, F.
    Ballardin, G.
    Ballmer, S. W.
    Barayoga, J. C.
    Barclay, S. E.
    Barish, B. C.
    Barker, D.
    Barone, F.
    Barr, B.
    [J]. PHYSICAL REVIEW X, 2016, 6 (04):
  • [3] [Anonymous], 1918, SPACE TIME MATTER
  • [4] [Anonymous], P FDN SPAC TIM REFL
  • [5] [Anonymous], ARXIV14106675GRQC
  • [6] [Anonymous], ARXIVHEPTH0001115HEP
  • [7] [Anonymous], THESIS
  • [9] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [10] Giving up the ghost
    Bender, Carl M.
    Mannheim, Philip D.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (30)