Enforcing energy, helicity and strong mass conservation in finite element computations for incompressible Navier-Stokes simulations

被引:7
作者
Cousins, Benjamin R. [1 ]
Rebholz, Leo G. [1 ]
Wilson, Nicholas E. [1 ]
机构
[1] Clemson Univ, Dept Math Sci, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
Navier-Stokes equations; Helicity conservation; Strong mass conservation; Scott-Vogelius elements; POTENTIAL ENSTROPHY; PARA-VERSION; SCHEME; EQUATIONS;
D O I
10.1016/j.amc.2011.05.111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a finite element scheme for the 3D Navier-Stokes equations (NSE) that globally conserves energy and helicity and, through the use of Scott-Vogelius elements, enforces pointwise the solenoidal constraints for velocity and vorticity. A complete numerical analysis is given, including proofs for conservation laws, unconditional stability and optimal convergence. We also show the method can be efficiently computed by exploiting a connection between this method, its associated penalty method, and the method arising from using grad-div stabilized Taylor-Hood elements. Finally, we give numerical examples which verify the theory and demonstrate the effectiveness of the scheme. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1208 / 1221
页数:14
相关论文
共 26 条
[1]  
[Anonymous], RAIRO MATH MODEL NUM
[2]  
ARAKAWA A, 1981, MON WEATHER REV, V109, P18, DOI 10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO
[3]  
2
[4]  
Arakawa A., 1966, Journal of Computational Physics, V1, P119, DOI [DOI 10.1016/0021-9991(66)90015-5, /10.1016/0021-9991(66)90015-5]
[5]  
Case M., 2011, SIAM J NUME IN PRESS
[6]  
Case MA, 2011, INT J NUMER ANAL MOD, V8, P118
[7]   Approximation of time-dependent, viscoelastic fluid flow: Crank-Nicolson, finite element approximation [J].
Ervin, VJ ;
Heuer, N .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (02) :248-283
[8]  
Girault V., 2012, Finite Element Methods for NavierStokes Equations: Theory and Algorithms
[9]   The Penalty Method for the Navier-Stokes Equations [J].
Heinrich, J. C. ;
Vionnet, C. A. .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 1995, 2 (02) :51-65
[10]   Time-dependent flow across a step: the slip with friction boundary condition [J].
John, V ;
Liakos, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2006, 50 (06) :713-731