Crowdsourcing Network Inference: The DREAM Predictive Signaling Network Challenge

被引:87
作者
Prill, Robert J. [1 ,2 ]
Saez-Rodriguez, Julio [2 ,3 ]
Alexopoulos, Leonidas G. [4 ]
Sorger, Peter K. [5 ,6 ]
Stolovitzky, Gustavo [1 ]
机构
[1] IBM Computat Biol Ctr, Yorktown Hts, NY 10598 USA
[2] European Bioinformat Inst EMBL EBI, Cambridge CB10 1SD, England
[3] European Mol Biol Lab, Genome Biol Unit, D-69117 Heidelberg, Germany
[4] Natl Tech Univ Athens, Dept Mech Engn, Athens 15780, Greece
[5] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[6] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
MASS CYTOMETRY; GENE NETWORKS; CELL; RECEPTOR;
D O I
10.1126/scisignal.2002212
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Computational analyses of systematic measurements on the states and activities of signaling proteins (as captured by phosphoproteomic data, for example) have the potential to uncover uncharacterized protein-protein interactions and to identify the subset that are important for cellular response to specific biological stimuli. However, inferring mechanistically plausible protein signaling networks (PSNs) from phosphoproteomics data is a difficult task, owing in part to the lack of sufficiently comprehensive experimental measurements, the inherent limitations of network inference algorithms, and a lack of standards for assessing the accuracy of inferred PSNs. A case study in which 12 research groups inferred PSNs from a phosphoproteomics data set demonstrates an assessment of inferred PSNs on the basis of the accuracy of their predictions. The concurrent prediction of the same previously unreported signaling interactions by different participating teams suggests relevant validation experiments and establishes a framework for combining PSNs inferred by multiple research groups into a composite PSN. We conclude that crowdsourcing the construction of PSNs-that is, outsourcing the task to the interested community-may be an effective strategy for network inference.
引用
收藏
页数:6
相关论文
共 18 条
[1]   Networks Inferred from Biochemical Data Reveal Profound Differences in Toll-like Receptor and Inflammatory Signaling between Normal and Transformed Hepatocytes [J].
Alexopoulos, Leonidas G. ;
Saez-Rodriguez, Julio ;
Cosgrove, Benjamin D. ;
Lauffenburger, Douglas A. ;
Sorger, Peter K. .
MOLECULAR & CELLULAR PROTEOMICS, 2010, 9 (09) :1849-1865
[2]   Mass Cytometry: Technique for Real Time Single Cell Multitarget Immunoassay Based on Inductively Coupled Plasma Time-of-Flight Mass Spectrometry [J].
Bandura, Dmitry R. ;
Baranov, Vladimir I. ;
Ornatsky, Olga I. ;
Antonov, Alexei ;
Kinach, Robert ;
Lou, Xudong ;
Pavlov, Serguei ;
Vorobiev, Sergey ;
Dick, John E. ;
Tanner, Scott D. .
ANALYTICAL CHEMISTRY, 2009, 81 (16) :6813-6822
[3]   How to infer gene networks from expression profiles [J].
Bansal, Mukesh ;
Belcastro, Vincenzo ;
Ambesi-Impiombato, Alberto ;
di Bernardo, Diego .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[4]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[5]  
Ciaccio MF, 2010, NAT METHODS, V7, P148, DOI [10.1038/NMETH.1418, 10.1038/nmeth.1418]
[6]   A Boolean Approach to Linear Prediction for Signaling Network Modeling [J].
Eduati, Federica ;
Corradin, Alberto ;
Di Camillo, Barbara ;
Toffolo, Gianna .
PLOS ONE, 2010, 5 (09) :1-6
[7]   Survival of the sparsest: robust gene networks are parsimonious [J].
Leclerc, Robert D. .
MOLECULAR SYSTEMS BIOLOGY, 2008, 4 (1)
[8]   Formation of regulatory patterns during signal propagation in a mammalian cellular network [J].
Ma'ayan, A ;
Jenkins, SL ;
Neves, S ;
Hasseldine, A ;
Grace, E ;
Dubin-Thalere, B ;
Eungdamrong, NJ ;
Weng, GZ ;
Ram, PT ;
Rice, JJ ;
Kershenbaum, A ;
Stolovitzky, GA ;
Blitzer, RD ;
Iyengar, R .
SCIENCE, 2005, 309 (5737) :1078-1083
[9]   Ordered cyclic motifs contribute to dynamic stability in biological and engineered networks [J].
Ma'ayan, Avi ;
Cecchi, Guillermo A. ;
Wagner, John ;
Rao, A. Ravi ;
Iyengar, Ravi ;
Stolovitzky, Gustavo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (49) :19235-19240
[10]   Revealing strengths and weaknesses of methods for gene network inference [J].
Marbach, Daniel ;
Prill, Robert J. ;
Schaffter, Thomas ;
Mattiussi, Claudio ;
Floreano, Dario ;
Stolovitzky, Gustavo .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (14) :6286-6291