Dynamical r-process studies within the neutrino-driven wind scenario and its sensitivity to the nuclear physics input

被引:133
作者
Arcones, A. [1 ,2 ]
Martinez-Pinedo, G. [2 ]
机构
[1] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
[2] GSI Helmholtzzentrum Schwerionenforsch, D-64291 Darmstadt, Germany
来源
PHYSICAL REVIEW C | 2011年 / 83卷 / 04期
基金
瑞士国家科学基金会;
关键词
WEAK INTERACTION RATES; WAITING POINT APPROXIMATION; CORE-COLLAPSE SUPERNOVAE; INTERMEDIATE-MASS NUCLEI; PROCESS NUCLEOSYNTHESIS; PROTONEUTRON STARS; RATE TABLES; ELEMENTS; SIMULATIONS; EXPLOSIONS;
D O I
10.1103/PhysRevC.83.045809
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We use results from long-time core-collapse supernovae simulations to investigate the impact of the late time evolution of the ejecta and of the nuclear physics input on the calculated r-process abundances. Based on the latest hydrodynamical simulations, heavy r-process elements cannot be synthesized in the neutrino-driven winds that follow the supernova explosion. However, by artificially increasing the wind entropy, elements up to A = 195 can be made. In this way one can reproduce the typical behavior of high-entropy ejecta where the r process is expected to occur. We identify which nuclear physics input is more important depending on the dynamical evolution of the ejecta. When the evolution proceeds at high temperatures (hot r process), an (n, gamma)reversible arrow(gamma, n) equilibrium is reached, while at low temperatures (cold r process) there is a competition between neutron captures and beta decays. In the first phase of the r process, while enough neutrons are available, the most relevant nuclear physics inputs are the nuclear masses for the hot r process and the neutron capture and beta-decay rates for the cold r process. At the end of this phase, the abundances follow a steady beta flow for the hot r process and a steady flow of neutron captures and beta decays for the cold r process. After neutrons are almost exhausted, matter decays to stability and our results show that in both cases neutron captures are key for determining the final abundances, the position of the r-process peaks, and the formation of the rare-earth peak. In all the cases studied, we find that the freeze-out occurs in a time scale of several seconds.
引用
收藏
页数:18
相关论文
共 88 条
[1]   Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows - I. Spherically symmetric hydrodynamic simulations [J].
Arcones, A. ;
Janka, H.-Th. ;
Scheck, L. .
ASTRONOMY & ASTROPHYSICS, 2007, 467 (03) :1227-1248
[2]   Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows II. The reverse shock in two-dimensional simulations [J].
Arcones, A. ;
Janka, H. -Th. .
ASTRONOMY & ASTROPHYSICS, 2011, 526
[3]  
ARCONES A, 1975, ASTOPHYS J IN PRESS
[4]   The r-process of stellar nucleosynthesis: Astrophysics and nuclear physics achievements and mysteries [J].
Arnould, M. ;
Goriely, S. ;
Takahashi, K. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 450 (4-6) :97-213
[5]   The NUBASE evaluation of nuclear and decay properties [J].
Audi, G ;
Bersillon, O ;
Blachot, J ;
Wapstra, AH .
NUCLEAR PHYSICS A, 2003, 729 (01) :3-128
[6]   Neutron capture on 130Sn during r-process freeze-out [J].
Beun, J. ;
Blackmon, J. C. ;
Hix, W. R. ;
McLaughlin, G. C. ;
Smith, M. S. ;
Surman, R. .
JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2009, 36 (02)
[7]   POSSIBLE ALTERNATIVE TO R-PROCESS [J].
BLAKE, JB ;
SCHRAMM, DN .
ASTROPHYSICAL JOURNAL, 1976, 209 (03) :846-849
[8]   Beta-decay of Z < 50 nuclei near the N=82 closed neutron shell [J].
Borzov, I. N. ;
Cuenca-Garcia, J. J. ;
Langanke, K. ;
Martinez-Pinedo, G. ;
Montes, F. .
NUCLEAR PHYSICS A, 2008, 814 :159-173
[9]   Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport -: I.: Numerical method and results for a 15 M⊙ star [J].
Buras, R ;
Rampp, M ;
Janka, HT ;
Kifonidis, K .
ASTRONOMY & ASTROPHYSICS, 2006, 447 (03) :1049-U136
[10]   SYNTHESIS OF THE ELEMENTS IN STARS [J].
BURBIDGE, EM ;
BURBIDGE, GR ;
FOWLER, WA ;
HOYLE, F .
REVIEWS OF MODERN PHYSICS, 1957, 29 (04) :547-650